
<!DOCTYPE html>

<h1>Fabric Mind</h1>

<div class="subtitle">Enterprise Cognitive Memory Platform —

Production-grade memory infrastructure for reliable agentic

AI</div>

<h2 id="problem">What Problem Fabric Mind Solves</h2>

<p>Agentic AI systems deployed in enterprise production

environments exhibit systematic failures that stem from a single

architectural gap: the absence of organizational memory.</p>

<p>These systems reason effectively within individual sessions

but cannot learn from outcomes across sessions. Each interaction

begins from zero, with no connection to prior attempts, failures,

or successful resolutions.</p>

<p>The industry response has focused on context engineering—

longer context windows, better retrieval systems, sub-agent

orchestration, and context compaction. These approaches optimize

how agents think at inference time, but they do not address how

systems learn over time.</p>

<p>Context engineering provides agents with more information to

reason over in the moment, but when the session ends, that

context is discarded. The next session starts fresh, repeating

the same diagnostic steps, making the same mistakes, and

rediscovering the same solutions.</p>

<p>This creates four structural failure modes that recur

systematically:</p>

<p>Confident but wrong actions. Agents execute

decisions with high certainty despite incorrect reasoning because

the system provides no mechanism to compare current reasoning

against past outcomes. Confidence remains decoupled from

accuracy.</p>

<p>Infinite loops and tool thrashing. Systems

repeat the same failed attempts without recognizing the pattern.

Each retry appears novel to the agent because no attempt history

persists across reasoning cycles.</p>

<p>Unsafe automation. Actions execute without

awareness of past incidents, constraints, or failure conditions.

The agent operates as if every situation is encountered for the

first time, ignoring prior escalations or operator interventions.

</p>

<p>Reset learning. Each session starts from

zero. Resolved issues recur. Successful patterns are rediscovered

repeatedly. The system cannot answer fundamental operational

questions: "Have we seen this before?" "What worked last time?"

"What usually happens next?"</p>

<div class="callout">

 <div class="callout-title">Core Thesis</div>

 <p style="margin-bottom: 0;">Outcomes, not prompts, drive

system learning. Fabric Mind introduces governed organizational

memory with explicit gates and outcome feedback loops,

transforming agentic AI from stateless reasoning into outcome-

calibrated operations.</p>

</div>

<p>Fabric Mind solves this by providing enterprise-grade memory

infrastructure that persists experience across sessions,

recognizes patterns, enforces safety through gates, and feeds

outcomes back to calibrate future behavior. Memory does not

replace reasoning—it informs it. Agents still reason over current

context, but they do so with awareness of past outcomes, attempt

history, and learned patterns.</p>

<p>This is not optional infrastructure. It is the foundation of

reliable agentic AI in production.</p>

<div class="callout">

 <div class="callout-title">Positioning</div>

 <p style="margin-bottom: 0;">Fabric Mind is persistent memory

infrastructure — not an agent framework or prompt system.</p>

</div>

<h2 id="overview">1. Platform Overview</h2>

<p>Fabric Mind operates as a memory control plane that sits

between event sources and agentic execution. It captures signals

from enterprise systems, interprets them as impressions, stores

them as durable memory, assembles context for reasoning, detects

patterns, recommends next best actions, gates execution for

safety, and captures outcomes to update memory confidence.</p>

<p>The platform follows a unidirectional flow designed to ensure

every action is informed by past experience and every outcome

reinforces or weakens learned patterns:</p>

<div class="diagram-container">

 <svg width="900" height="520" viewBox="0 0 900 520"

xmlns="http://www.w3.org/2000/svg">

 <!-- Outer frame -->

 <rect x="10" y="10" width="880" height="500" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <!-- Title -->

 <text x="450" y="40" font-size="16" fill="#111827" text-

anchor="middle" font-weight="700">Fabric Mind Platform

Flow</text>

 <!-- Row 1: Ingestion → Impression → Memory Store → Memory

Graph -->

 <rect x="50" y="70" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="130" y="100" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Event & Signal</text>

 <text x="130" y="115" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Ingestion</text>

 <line x1="210" y1="97.5" x2="240" y2="97.5" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="240,97.5 235,94.5 235,100.5"

fill="#6B7280"/>

 <rect x="240" y="70" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="320" y="100" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Impression</text>

 <text x="320" y="115" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Engine</text>

 <line x1="400" y1="97.5" x2="430" y2="97.5" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="430,97.5 425,94.5 425,100.5"

fill="#6B7280"/>

 <rect x="430" y="70" width="160" height="55" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="510" y="100" font-size="13" fill="#DC2626" text-

anchor="middle" font-weight="700">Memory Store</text>

 <text x="510" y="115" font-size="13" fill="#DC2626" text-

anchor="middle" font-weight="700">(Temporal + Semantic)</text>

 <line x1="590" y1="97.5" x2="620" y2="97.5" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="620,97.5 615,94.5 615,100.5"

fill="#6B7280"/>

 <rect x="620" y="70" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="700" y="100" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Memory</text>

 <text x="700" y="115" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Graph</text>

 <!-- Row 2: Context Assembly → Pattern Detection → Next Best

Action -->

 <line x1="510" y1="125" x2="510" y2="165" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="510,165 507,160 513,160" fill="#6B7280"/>

 <rect x="430" y="165" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="510" y="195" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Context Assembly</text>

 <text x="510" y="210" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Engine</text>

 <line x1="430" y1="192.5" x2="400" y2="192.5"

stroke="#6B7280" stroke-width="2"/>

 <polygon points="400,192.5 405,189.5 405,195.5"

fill="#6B7280"/>

 <rect x="240" y="165" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="320" y="195" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Pattern Detection</text>

 <text x="320" y="210" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">& Learning</text>

 <line x1="240" y1="192.5" x2="210" y2="192.5"

stroke="#6B7280" stroke-width="2"/>

 <polygon points="210,192.5 215,189.5 215,195.5"

fill="#6B7280"/>

 <rect x="50" y="165" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="130" y="195" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Next Best Action</text>

 <text x="130" y="210" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Engine</text>

 <!-- Row 3: Safety Gate → Action → Outcome -->

 <line x1="130" y1="220" x2="130" y2="260" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="130,260 127,255 133,255" fill="#6B7280"/>

 <rect x="50" y="260" width="160" height="55" fill="#DC2626"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="130" y="285" font-size="13" fill="#FFFFFF" text-

anchor="middle" font-weight="700">GATE: Safety &</text>

 <text x="130" y="300" font-size="13" fill="#FFFFFF" text-

anchor="middle" font-weight="700">Governance</text>

 <line x1="210" y1="287.5" x2="240" y2="287.5"

stroke="#6B7280" stroke-width="2"/>

 <polygon points="240,287.5 235,284.5 235,290.5"

fill="#6B7280"/>

 <rect x="240" y="260" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="320" y="285" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Action Execution</text>

 <text x="320" y="300" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">(Gated)</text>

 <line x1="400" y1="287.5" x2="430" y2="287.5"

stroke="#6B7280" stroke-width="2"/>

 <polygon points="430,287.5 425,284.5 425,290.5"

fill="#6B7280"/>

 <rect x="430" y="260" width="160" height="55" fill="#F9FAFB"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="510" y="285" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Outcome</text>

 <text x="510" y="300" font-size="13" fill="#374151" text-

anchor="middle" font-weight="600">Capture</text>

 <!-- Feedback loop: Outcome → Memory Store (orthogonal

routing) -->

 <line x1="590" y1="287.5" x2="810" y2="287.5"

stroke="#DC2626" stroke-width="2" stroke-dasharray="4,3"/>

 <line x1="810" y1="287.5" x2="810" y2="50" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,3"/>

 <line x1="810" y1="50" x2="510" y2="50" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,3"/>

 <line x1="510" y1="50" x2="510" y2="70" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,3"/>

 <polygon points="510,70 507,65 513,65" fill="#DC2626"/>

 <text x="820" y="170" font-size="12" fill="#DC2626" font-

weight="600" font-style="italic">Memory</text>

 <text x="820" y="185" font-size="12" fill="#DC2626" font-

weight="600" font-style="italic">Update</text>

 <!-- Legend -->

 <text x="50" y="380" font-size="12" fill="#6B7280" font-

weight="600">Key Components:</text>

 <rect x="50" y="395" width="14" height="14" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1.5"/>

 <text x="72" y="406" font-size="11" fill="#6B7280">Memory

persistence layer</text>

 <rect x="250" y="395" width="14" height="14" fill="#DC2626"/>

 <text x="272" y="406" font-size="11" fill="#6B7280">Control

gates</text>

 <line x1="380" y1="402" x2="398" y2="402" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,3"/>

 <text x="406" y="406" font-size="11" fill="#6B7280">Outcome

feedback loop</text>

 </svg>

</div>

<p>Every component in this flow serves a specific operational

purpose. Signals are captured from enterprise systems (incidents,

customer interactions, code changes). Impressions interpret these

signals semantically, extracting meaning and context. Memory

stores these impressions with temporal and semantic indexing,

allowing the system to answer: "Have we seen this before?"

Context assembly retrieves relevant memory and constructs bounded

payloads for reasoning. Pattern detection identifies recurring

situations and learns from outcomes. Next Best Action recommends

responses based on learned patterns. Safety gates enforce

constraints before execution. Outcome capture feeds results back

to memory, reinforcing successful patterns and weakening failed

ones.</p>

<p>This architecture ensures that every action is informed by

past experience and every outcome contributes to future learning.

The system does not rely on prompt engineering or context window

size. It relies on durable memory, explicit gates, and outcome

feedback.</p>

<h2 id="components">2. Core Platform Components</h2>

<p>Each component in the Fabric Mind platform serves a specific

operational function. The following sections describe what each

component does, its inputs and outputs, how it persists data, its

operational behavior, API touchpoints, and how developers

integrate with it.</p>

<h3 id="event-ingestion">2.1 Event & Signal Ingestion</h3>

<p>What it does: The ingestion layer captures

raw events and signals from enterprise systems—incident alerts,

customer interactions, code commits, deployment events, and

operational metrics. It normalizes these heterogeneous inputs

into a unified event schema, validates structure, enriches with

metadata (timestamps, source identifiers, tenant context), and

forwards them to the Impression Engine for semantic

interpretation.</p>

<p>Inputs: JSON payloads from webhooks, message

queues (Kafka, RabbitMQ), HTTP POST endpoints, SDK clients, and

batch uploads. Events include incident alerts, support tickets,

chat transcripts, telemetry streams, and user actions.</p>

<p>Outputs: Normalized event records with schema

validation, enriched metadata, and correlation identifiers.

Events are routed to the Impression Engine for semantic

processing.</p>

<p>Persistence model: Events are written to an

append-only log for audit and replay. Retention policies are

configurable per tenant (default 90 days for raw events,

indefinite for derived impressions). Dead-letter queues capture

malformed events for manual review.</p>

<p>Operational behavior: Ingestion is

horizontally scalable with partitioned queues. Idempotency is

enforced via event IDs to prevent duplicate processing.

Backpressure mechanisms throttle ingest rates if downstream

components are saturated. Failed events are retried with

exponential backoff before moving to dead-letter storage.</p>

<p>API touchpoints:</p>

 <code>POST /v1/events</code> — Single event ingestion

 <code>POST /v1/events/batch</code> — Batch ingestion (up to

1000 events per request)

 <code>GET /v1/events/{event_id}</code> — Retrieve event by

ID for audit

<p>How developers use it:</p>

 Configure webhook endpoints in source systems (PagerDuty,

Zendesk, GitHub) to forward events to Fabric Mind ingestion API.

 Use SDK clients (Python, Node.js, Go) to emit events

programmatically from custom applications.

 Set up batch ingestion jobs for historical data backfill or

periodic synchronization.

 Monitor ingestion metrics (event rate, validation errors,

dead-letter queue depth) via observability dashboards.

 Define retention policies and schema validation rules per

event type in tenant configuration.

<div class="diagram-container">

 <svg width="760" height="270" viewBox="0 0 760 270"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="250" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="111827" text-

anchor="middle" font-weight="700">Event & Signal Ingestion</text>

 <!-- Event Sources -->

 <rect x="40" y="60" width="120" height="40" fill="#F3F4F6"

stroke="#9CA3AF" stroke-width="1.5" rx="4"/>

 <text x="100" y="85" font-size="11" fill="#4B5563" text-

anchor="middle" font-weight="600">Incident Alerts</text>

 <rect x="40" y="110" width="120" height="40" fill="#F3F4F6"

stroke="#9CA3AF" stroke-width="1.5" rx="4"/>

 <text x="100" y="135" font-size="11" fill="#4B5563" text-

anchor="middle" font-weight="600">Support Tickets</text>

 <rect x="40" y="160" width="120" height="40" fill="#F3F4F6"

stroke="#9CA3AF" stroke-width="1.5" rx="4"/>

 <text x="100" y="185" font-size="11" fill="#4B5563" text-

anchor="middle" font-weight="600">Code Commits</text>

 <rect x="40" y="210" width="120" height="40" fill="#F3F4F6"

stroke="#9CA3AF" stroke-width="1.5" rx="4"/>

 <text x="100" y="235" font-size="11" fill="#4B5563" text-

anchor="middle" font-weight="600">Telemetry</text>

 <!-- Arrows to Ingestion -->

 <line x1="160" y1="80" x2="240" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <line x1="160" y1="130" x2="240" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <line x1="160" y1="180" x2="240" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <line x1="160" y1="230" x2="240" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <!-- Ingestion Layer -->

 <rect x="240" y="100" width="160" height="80" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="320" y="130" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Ingestion Layer</text>

 <text x="320" y="148" font-size="10" fill="#3B82F6" text-

anchor="middle">• Schema validation</text>

 <text x="320" y="162" font-size="10" fill="#3B82F6" text-

anchor="middle">• Metadata enrichment</text>

 <text x="320" y="176" font-size="10" fill="#3B82F6" text-

anchor="middle">• Idempotency check</text>

 <!-- Arrow to Append-Only Log -->

 <line x1="400" y1="140" x2="480" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="480,140 475,137 475,143" fill="#6B7280"/>

 <!-- Append-Only Log -->

 <rect x="480" y="100" width="140" height="80" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="550" y="130" font-size="12" fill="#DC2626" text-

anchor="middle" font-weight="700">Append-Only Log</text>

 <text x="550" y="148" font-size="10" fill="#991B1B" text-

anchor="middle">Audit & Replay</text>

 <text x="550" y="162" font-size="10" fill="#991B1B" text-

anchor="middle">Retention: 90 days</text>

 <text x="550" y="176" font-size="10" fill="#991B1B" text-

anchor="middle">Dead-letter queue</text>

 <!-- Arrow to Impression Engine -->

 <line x1="620" y1="140" x2="680" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="680,140 675,137 675,143" fill="#6B7280"/>

 <text x="700" y="145" font-size="10" fill="#6B7280" font-

weight="600">To Impression</text>

 <text x="700" y="158" font-size="10" fill="#6B7280" font-

weight="600">Engine</text>

 </svg>

</div>

<h3 id="impression-engine">2.2 Impression Engine</h3>

<p>What it does: The Impression Engine

transforms raw events into semantic impressions—structured

interpretations that capture meaning, intent, and context. It

extracts entities, identifies situation types, computes semantic

embeddings, and tags impressions with metadata that enables

downstream pattern detection and context assembly. This is where

unstructured signals become queryable memory.</p>

<p>Inputs: Normalized events from the ingestion

layer, including incident descriptions, support ticket text, chat

transcripts, and telemetry annotations.</p>

<p>Outputs: Semantic impressions with extracted

entities (service names, error codes, user IDs), situation

signatures (incident type, severity, triggering conditions),

embeddings for similarity search, and temporal markers.</p>

<p>Persistence model: Impressions are written to

the Memory Store with both temporal and semantic indexes. Each

impression includes provenance (source event ID, timestamp,

processing version) and is immutable once written. Retention

follows memory decay policies based on recency and reinforcement.

</p>

<p>Operational behavior: The engine uses

embedding models (sentence transformers, domain-specific fine-

tuned models) to generate semantic vectors. Entity extraction

leverages NER models and domain-specific lexicons. Processing is

idempotent and can be rerun with updated models to regenerate

impressions. Failures are logged and retried; malformed inputs

are flagged for review.</p>

<p>API touchpoints:</p>

 <code>POST /v1/impressions/generate</code> — Generate

impression from event (internal API)

 <code>GET /v1/impressions/{impression_id}</code> — Retrieve

impression by ID

 <code>POST /v1/impressions/search</code> — Semantic search

across impressions

<p>How developers use it:</p>

 Configure entity extraction rules and domain lexicons for

specific use cases (e.g., service names, error patterns).

 Select or fine-tune embedding models for semantic

similarity (default: all-MiniLM-L6-v2 for general use).

 Define situation taxonomies (incident types, interaction

categories) to tag impressions consistently.

 Use semantic search API to query historical impressions by

similarity to current events.

 Monitor impression quality metrics (entity extraction

accuracy, embedding drift) and retrain models as needed.

<div class="diagram-container">

 <svg width="760" height="300" viewBox="0 0 760 300"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="280" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Impression Engine</text>

 <!-- Raw Event -->

 <rect x="40" y="60" width="140" height="60" fill="#F9FAFB"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="110" y="85" font-size="11" fill="#374151" text-

anchor="middle" font-weight="600">Raw Event</text>

 <text x="110" y="102" font-size="9" fill="#6B7280" text-

anchor="middle">"Service X degraded"</text>

 <!-- Arrow -->

 <line x1="180" y1="90" x2="220" y2="90" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="220,90 215,87 215,93" fill="#6B7280"/>

 <!-- Processing Steps -->

 <rect x="220" y="60" width="180" height="160" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="310" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Semantic Processing</text>

 <rect x="235" y="100" width="150" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="310" y="120" font-size="10" fill="#1E40AF" text-

anchor="middle">Entity Extraction</text>

 <rect x="235" y="138" width="150" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="310" y="158" font-size="10" fill="#1E40AF" text-

anchor="middle">Situation Classification</text>

 <rect x="235" y="176" width="150" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="310" y="196" font-size="10" fill="#1E40AF" text-

anchor="middle">Embedding Generation</text>

 <!-- Arrow -->

 <line x1="400" y1="140" x2="460" y2="140" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="460,140 455,137 455,143" fill="#6B7280"/>

 <!-- Semantic Impression -->

 <rect x="460" y="60" width="260" height="160" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="590" y="85" font-size="12" fill="#DC2626" text-

anchor="middle" font-weight="700">Semantic Impression</text>

 <text x="590" y="108" font-size="9" fill="#991B1B" text-

anchor="middle">Entities: [service_x, degradation, config_change]

</text>

 <text x="590" y="124" font-size="9" fill="#991B1B" text-

anchor="middle">Situation:

incident_performance_degradation</text>

 <text x="590" y="140" font-size="9" fill="#991B1B" text-

anchor="middle">Embedding: [0.23, -0.41, 0.67, ...]</text>

 <text x="590" y="156" font-size="9" fill="#991B1B" text-

anchor="middle">Timestamp: 2026-01-09T10:15:00Z</text>

 <text x="590" y="172" font-size="9" fill="#991B1B" text-

anchor="middle">Provenance: event_abc123</text>

 <text x="590" y="200" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">→ To Memory Store</text>

 </svg>

</div>

<h3 id="memory-store">2.3 Memory Store (Temporal + Semantic)</h3>

<p>What it does: The Memory Store persists

semantic impressions with dual indexing: temporal (when did this

happen) and semantic (what does this mean). It enables the system

to answer two critical questions: "Have we seen this before?"

(semantic similarity search) and "When was this relevant?"

(temporal decay and freshness). The store implements memory decay

policies, reinforcement mechanisms, and provenance tracking to

ensure that memory influences reasoning appropriately over time.

</p>

<p>Inputs: Semantic impressions from the

Impression Engine, including embeddings, entities, situation

signatures, timestamps, and provenance metadata.</p>

<p>Outputs: Query results for semantic

similarity searches (top-k similar impressions), temporal range

queries (impressions within time windows), and memory manifests

(collections of relevant impressions with confidence scores and

freshness indicators).</p>

<p>Persistence model: Impressions are stored in

a vector database with semantic embeddings (for similarity

search) and a time-series store with temporal indexes (for

recency queries). Each impression includes decay metadata (last

accessed, reinforcement count, confidence score) that degrades

over time unless reinforced by repeated exposure or successful

outcomes. Retention policies are tenant-configurable with default

2-year retention for reinforced memories and 90-day retention for

unreinforced impressions.</p>

<p>Operational behavior: Writes are append-only

with versioning. Updates create new versions rather than

modifying existing records. Decay is computed lazily at query

time based on elapsed time since last access and reinforcement

count. Similarity searches use approximate nearest neighbor (ANN)

algorithms for sub-100ms latency at scale. The store supports

multi-tenant isolation with per-tenant encryption keys and access

controls. Backup and disaster recovery follow enterprise SLOs

with RPO < 1 hour and RTO < 4 hours.</p>

<p>API touchpoints:</p>

 <code>POST /v1/memory/write</code> — Write impression to

memory store

 <code>POST /v1/memory/search/semantic</code> — Semantic

similarity search by embedding

 <code>POST /v1/memory/search/temporal</code> — Temporal

range query

 <code>POST /v1/memory/reinforce</code> — Reinforce memory

based on outcome

 <code>GET /v1/memory/{memory_id}</code> — Retrieve specific

memory by ID

<p>How developers use it:</p>

 Configure retention policies and decay parameters per

tenant (default: 2-year retention, exponential decay with 30-day

half-life).

 Write impressions to memory store immediately after

semantic processing in the Impression Engine.

 Query semantic similarity during context assembly to

retrieve relevant past experiences.

 Query temporal ranges to filter memories by recency or

specific time windows (e.g., "incidents in the last 7 days").

 Reinforce memories after successful outcomes to increase

confidence and extend retention.

 Monitor memory store metrics (write throughput, query

latency, storage utilization, decay rate) via observability

dashboards.

<div class="diagram-container">

 <svg width="760" height="340" viewBox="0 0 760 340"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="320" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Memory Store (Temporal +

Semantic)</text>

 <!-- Impression Input -->

 <rect x="40" y="60" width="160" height="60" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1.5" rx="4"/>

 <text x="120" y="85" font-size="11" fill="#DC2626" text-

anchor="middle" font-weight="600">Semantic Impression</text>

 <text x="120" y="102" font-size="9" fill="#991B1B" text-

anchor="middle">Embedding + Entities</text>

 <!-- Arrow -->

 <line x1="200" y1="90" x2="240" y2="90" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="240,90 235,87 235,93" fill="#6B7280"/>

 <!-- Dual Indexing -->

 <rect x="240" y="60" width="240" height="180" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="360" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Dual Indexing</text>

 <!-- Semantic Index -->

 <rect x="260" y="100" width="200" height="60" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="360" y="120" font-size="10" fill="#1E40AF" text-

anchor="middle" font-weight="600">Semantic Index</text>

 <text x="360" y="135" font-size="9" fill="#3B82F6" text-

anchor="middle">Vector DB (ANN search)</text>

 <text x="360" y="148" font-size="9" fill="#3B82F6" text-

anchor="middle">"Have we seen this before?"</text>

 <!-- Temporal Index -->

 <rect x="260" y="170" width="200" height="60" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="360" y="190" font-size="10" fill="#1E40AF" text-

anchor="middle" font-weight="600">Temporal Index</text>

 <text x="360" y="205" font-size="9" fill="#3B82F6" text-

anchor="middle">Time-series store</text>

 <text x="360" y="218" font-size="9" fill="#3B82F6" text-

anchor="middle">"When was this relevant?"</text>

 <!-- Arrows to Queries -->

 <line x1="480" y1="130" x2="520" y2="100" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="520,100 518,105 515,100" fill="#6B7280"/>

 <line x1="480" y1="200" x2="520" y2="180" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="520,180 518,185 515,180" fill="#6B7280"/>

 <!-- Query Results -->

 <rect x="520" y="60" width="200" height="60" fill="#F3F4F6"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="620" y="85" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Similarity Search

Results</text>

 <text x="620" y="100" font-size="9" fill="#6B7280" text-

anchor="middle">Top-k similar impressions</text>

 <rect x="520" y="140" width="200" height="60" fill="#F3F4F6"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="620" y="165" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Temporal Range Results</text>

 <text x="620" y="180" font-size="9" fill="#6B7280" text-

anchor="middle">Impressions within time window</text>

 <!-- Decay & Reinforcement -->

 <rect x="240" y="260" width="240" height="60" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1.5" rx="4"/>

 <text x="360" y="280" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Decay & Reinforcement</text>

 <text x="360" y="295" font-size="9" fill="#991B1B" text-

anchor="middle">Confidence degrades over time</text>

 <text x="360" y="308" font-size="9" fill="#991B1B" text-

anchor="middle">Successful outcomes reinforce memory</text>

 </svg>

</div>

<h3 id="memory-graph">2.4 Memory Graph</h3>

<p>What it does: The Memory Graph connects

related impressions into a navigable knowledge structure,

capturing relationships between events, entities, outcomes, and

patterns. It enables the system to traverse memory contextually—

following causal chains ("this led to that"), entity

relationships ("these incidents involved the same service"), and

outcome patterns ("these actions produced similar results"). The

graph supports root cause analysis, pattern discovery, and

context-aware reasoning by making implicit connections explicit.

</p>

<p>Inputs: Impressions from the Memory Store

with extracted entities, situation signatures, and outcome

metadata. Relationship hints from pattern detection (co-

occurrence, temporal proximity, causal links).</p>

<p>Outputs: Graph traversal results (connected

impressions following specified relationship types), subgraph

extractions (clusters of related memories), and relationship

strength scores (confidence in connections based on reinforcement

and recency).</p>

<p>Persistence model: Graph structure is stored

in a graph database with nodes (impressions) and edges

(relationships). Edges are typed (causal, co-occurrence, entity-

based, outcome-based) and weighted (relationship strength decays

over time unless reinforced). Graph snapshots are versioned for

rollback and audit. Tenant isolation ensures graph queries cannot

traverse across tenant boundaries.</p>

<p>Operational behavior: Graph construction is

incremental—new impressions are added as nodes, and relationships

are inferred based on entity overlap, temporal proximity, and

outcome similarity. Relationship inference runs asynchronously

after impression writes. Graph queries use bounded traversal

depth (default: 3 hops) to prevent runaway expansion.

Relationship strength is recomputed periodically based on decay

policies. The graph supports read-heavy workloads with caching

and materialized views for common traversal patterns.</p>

<p>API touchpoints:</p>

 <code>POST /v1/graph/traverse</code> — Traverse graph from

starting impression

 <code>POST /v1/graph/subgraph</code> — Extract subgraph

around entity or situation

 <code>GET /v1/graph/relationships/{impression_id}</code> —

Get all relationships for impression

 <code>POST /v1/graph/infer</code> — Trigger relationship

inference (internal API)

<p>How developers use it:</p>

 Configure relationship inference rules (entity overlap

threshold, temporal proximity window, outcome similarity

threshold).

 Use graph traversal during context assembly to retrieve not

just similar impressions, but also causally related ones.

 Extract subgraphs for root cause analysis (e.g., "show all

incidents related to service X in the last 30 days").

 Query relationships to understand why certain memories are

connected (provenance of inferred links).

 Monitor graph metrics (node count, edge count, traversal

latency, relationship inference throughput) via observability

dashboards.

<div class="diagram-container">

 <svg width="760" height="320" viewBox="0 0 760 320"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="300" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Memory Graph</text>

 <!-- Central Node -->

 <circle cx="380" cy="160" r="40" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2"/>

 <text x="380" y="155" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Incident A</text>

 <text x="380" y="170" font-size="8" fill="#991B1B" text-

anchor="middle">Service X down</text>

 <!-- Related Nodes -->

 <circle cx="240" cy="100" r="35" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="1.5"/>

 <text x="240" y="100" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">Incident B</text>

 <text x="240" y="112" font-size="7" fill="#3B82F6" text-

anchor="middle">Config change</text>

 <circle cx="520" cy="100" r="35" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="1.5"/>

 <text x="520" y="100" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">Incident C</text>

 <text x="520" y="112" font-size="7" fill="#3B82F6" text-

anchor="middle">Same service</text>

 <circle cx="240" cy="220" r="35" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="1.5"/>

 <text x="240" y="220" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">Resolution</text>

 <text x="240" y="232" font-size="7" fill="#3B82F6" text-

anchor="middle">Rollback</text>

 <circle cx="520" cy="220" r="35" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="1.5"/>

 <text x="520" y="220" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">Pattern</text>

 <text x="520" y="232" font-size="7" fill="#3B82F6" text-

anchor="middle">Recurring</text>

 <!-- Relationships (Edges) -->

 <line x1="275" y1="115" x2="345" y2="145" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,2"/>

 <text x="310" y="125" font-size="8" fill="#DC2626" font-

weight="600">causal</text>

 <line x1="415" y1="145" x2="485" y2="115" stroke="#6B7280"

stroke-width="1.5"/>

 <text x="450" y="125" font-size="8"

fill="#6B7280">entity</text>

 <line x1="345" y1="175" x2="275" y2="205" stroke="#10B981"

stroke-width="1.5"/>

 <text x="310" y="195" font-size="8" fill="#10B981" font-

weight="600">outcome</text>

 <line x1="415" y1="175" x2="485" y2="205" stroke="#6B7280"

stroke-width="1.5"/>

 <text x="450" y="195" font-size="8"

fill="#6B7280">temporal</text>

 <!-- Legend -->

 <rect x="40" y="260" width="680" height="40" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="50" y="278" font-size="9" fill="#374151" font-

weight="600">Relationship Types:</text>

 <line x1="140" y1="275" x2="160" y2="275" stroke="#DC2626"

stroke-width="2" stroke-dasharray="4,2"/>

 <text x="165" y="278" font-size="8"

fill="#6B7280">Causal</text>

 <line x1="210" y1="275" x2="230" y2="275" stroke="#6B7280"

stroke-width="1.5"/>

 <text x="235" y="278" font-size="8"

fill="#6B7280">Entity</text>

 <line x1="280" y1="275" x2="300" y2="275" stroke="#10B981"

stroke-width="1.5"/>

 <text x="305" y="278" font-size="8"

fill="#6B7280">Outcome</text>

 <line x1="360" y1="275" x2="380" y2="275" stroke="#6B7280"

stroke-width="1.5"/>

 <text x="385" y="278" font-size="8"

fill="#6B7280">Temporal</text>

 <text x="50" y="293" font-size="8" fill="#6B7280">Graph

enables: Root cause analysis, pattern discovery, context-aware

reasoning</text>

 </svg>

</div>

<h3 id="context-assembly">2.5 Context Assembly Engine</h3>

<p>What it does: The Context Assembly Engine

constructs bounded, relevant context payloads for reasoning

engines by querying memory, filtering for freshness and

confidence, and packaging results into a structured manifest. It

answers the question: "What does the agent need to know right

now?" by retrieving semantically similar impressions, traversing

the memory graph for causal context, applying freshness gates,

and assembling a compact payload that fits within reasoning token

limits while maximizing relevance and provenance.</p>

<p>Inputs: Current situation signature (event,

entities, context), query parameters (similarity threshold,

temporal window, max results), and tenant-specific assembly

policies (freshness requirements, confidence thresholds, graph

traversal depth).</p>

<p>Outputs: Context manifest containing:

relevant impressions (ranked by similarity and freshness), graph-

connected memories (causally related impressions), confidence

scores (per impression), provenance metadata (timestamps,

sources, reinforcement counts), and assembly metadata (query

parameters, result count, truncation indicators).</p>

<p>Persistence model: Context assembly is

stateless and ephemeral—manifests are not persisted by default.

Assembly requests and results are logged for audit and debugging.

Assembly policies (tenant-specific rules for freshness,

confidence, graph depth) are stored in tenant configuration.</p>

<p>Operational behavior: Assembly is synchronous

with sub-200ms latency target. The engine queries memory store

(semantic + temporal), traverses memory graph (bounded depth),

applies freshness and confidence filters, ranks results by

relevance, and truncates to fit token budget. Assembly is

idempotent—same input produces same output given unchanged memory

state. Failures are retried with exponential backoff; degraded

mode returns partial results with warnings if memory queries

timeout.</p>

<p>API touchpoints:</p>

 <code>POST /v1/context/assemble</code> — Assemble context

for current situation

 <code>POST /v1/context/preview</code> — Preview context

without logging (for testing)

 <code>GET /v1/context/policies</code> — Retrieve tenant

assembly policies

 <code>PUT /v1/context/policies</code> — Update tenant

assembly policies

<p>How developers use it:</p>

 Configure assembly policies per tenant (freshness window:

30 days, confidence threshold: 0.6, max results: 20, graph depth:

2 hops).

 Call context assembly before invoking reasoning engine,

passing current situation signature and query parameters.

 Inject assembled context manifest into reasoning prompt as

structured data (JSON or formatted text).

 Use preview endpoint during development to test assembly

behavior without affecting audit logs.

 Monitor assembly metrics (latency, result count, truncation

rate, freshness distribution) via observability dashboards.

 Tune assembly policies based on reasoning outcomes

(increase freshness window if too few results, decrease if too

many stale memories).

<div class="diagram-container">

 <svg width="760" height="360" viewBox="0 0 760 360"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="340" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Context Assembly Engine</text>

 <!-- Current Situation -->

 <rect x="40" y="60" width="140" height="60" fill="#F3F4F6"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="110" y="85" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Current Situation</text>

 <text x="110" y="100" font-size="8" fill="#6B7280" text-

anchor="middle">Event + Entities</text>

 <!-- Arrow -->

 <line x1="180" y1="90" x2="220" y2="90" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="220,90 215,87 215,93" fill="#6B7280"/>

 <!-- Assembly Process -->

 <rect x="220" y="60" width="320" height="240" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="380" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Assembly Process</text>

 <!-- Step 1 -->

 <rect x="240" y="100" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="120" font-size="9" fill="#1E40AF" text-

anchor="middle">1. Query Memory Store (semantic + temporal)

</text>

 <!-- Step 2 -->

 <rect x="240" y="145" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="165" font-size="9" fill="#1E40AF" text-

anchor="middle">2. Traverse Memory Graph (bounded depth)</text>

 <!-- Step 3 -->

 <rect x="240" y="190" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="210" font-size="9" fill="#1E40AF" text-

anchor="middle">3. Apply Freshness & Confidence Filters</text>

 <!-- Step 4 -->

 <rect x="240" y="235" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="255" font-size="9" fill="#1E40AF" text-

anchor="middle">4. Rank & Truncate to Token Budget</text>

 <!-- Arrow -->

 <line x1="540" y1="180" x2="580" y2="180" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="580,180 575,177 575,183" fill="#6B7280"/>

 <!-- Context Manifest -->

 <rect x="580" y="60" width="140" height="240" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="4"/>

 <text x="650" y="85" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Context Manifest</text>

 <text x="650" y="108" font-size="8" fill="#991B1B" text-

anchor="middle">Relevant impressions</text>

 <text x="650" y="123" font-size="8" fill="#991B1B" text-

anchor="middle">Graph-connected</text>

 <text x="650" y="138" font-size="8" fill="#991B1B" text-

anchor="middle">memories</text>

 <text x="650" y="158" font-size="8" fill="#991B1B" text-

anchor="middle">Confidence scores</text>

 <text x="650" y="173" font-size="8" fill="#991B1B" text-

anchor="middle">Provenance metadata</text>

 <text x="650" y="193" font-size="8" fill="#991B1B" text-

anchor="middle">Assembly metadata</text>

 <text x="650" y="218" font-size="9" fill="#DC2626" text-

anchor="middle" font-weight="600">Bounded & Relevant</text>

 <text x="650" y="233" font-size="8" fill="#991B1B" text-

anchor="middle">Fits token budget</text>

 <text x="650" y="248" font-size="8" fill="#991B1B" text-

anchor="middle">Maximizes relevance</text>

 <!-- Target Latency -->

 <rect x="220" y="310" width="320" height="30" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="380" y="330" font-size="9" fill="#374151" text-

anchor="middle" font-weight="600">Target Latency: < 200ms |

Idempotent | Degraded mode on timeout</text>

 </svg>

</div>

<h3 id="pattern-detection">2.6 Pattern Detection & Learning</h3>

<p>What it does: The Pattern Detection &

Learning component identifies recurring situations, outcome

correlations, and behavioral trends across accumulated memory. It

enables the system to learn from experience by detecting patterns

such as "configuration changes on Fridays lead to incidents,"

"rollback actions resolve 80% of service outages," or "customers

asking about feature X are likely to churn." Patterns are

represented as probabilistic rules with confidence scores,

reinforcement counts, and decay mechanisms to ensure learning

adapts to changing conditions.</p>

<p>Inputs: Impressions from Memory Store with

outcome labels (success, failure, neutral), entity co-occurrence

data from Memory Graph, and temporal sequences (event chains over

time).</p>

<p>Outputs: Detected patterns (situation →

outcome correlations with confidence scores), pattern manifests

(collections of related patterns for specific situations), and

pattern evolution metrics (how pattern confidence changes over

time based on reinforcement or contradiction).</p>

<p>Persistence model: Patterns are stored as

probabilistic rules with metadata: situation signature (entities,

context), outcome distribution (success rate, failure rate),

confidence score (based on sample size and consistency),

reinforcement count (how many times pattern has been observed),

and last updated timestamp. Patterns decay over time unless

reinforced by new observations. Pattern versioning enables

rollback if patterns become stale or misleading.</p>

<p>Operational behavior: Pattern detection runs

asynchronously as a background process, analyzing batches of

impressions for co-occurrence, temporal sequences, and outcome

correlations. Detection uses statistical thresholds (minimum

sample size: 10, minimum confidence: 0.7) to avoid spurious

patterns. Patterns are updated incrementally as new impressions

arrive—reinforced if consistent, weakened if contradicted.

Pattern queries are read-heavy with caching for frequently

accessed patterns. The system supports pattern freezing (lock

patterns for audit or compliance) and pattern rollback (revert to

previous pattern state).</p>

<p>API touchpoints:</p>

 <code>POST /v1/patterns/detect</code> — Trigger pattern

detection (internal API)

 <code>POST /v1/patterns/query</code> — Query patterns for

situation

 <code>GET /v1/patterns/{pattern_id}</code> — Retrieve

specific pattern

 <code>POST /v1/patterns/freeze</code> — Freeze pattern for

audit

 <code>POST /v1/patterns/rollback</code> — Rollback pattern

to previous version

<p>How developers use it:</p>

 Configure pattern detection thresholds (minimum sample

size, confidence threshold, decay rate).

 Query patterns during context assembly to include learned

correlations in reasoning context.

 Use pattern confidence scores to weight recommendations

(high-confidence patterns influence NBA more strongly).

 Monitor pattern evolution metrics to detect drift (patterns

becoming less predictive over time).

 Freeze patterns during incident response to prevent memory

updates from invalidating forensic analysis.

 Review pattern manifests periodically to validate learned

correlations and identify spurious patterns.

<div class="diagram-container">

 <svg width="760" height="340" viewBox="0 0 760 340"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="320" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Pattern Detection &

Learning</text>

 <!-- Input: Impressions -->

 <rect x="40" y="60" width="160" height="80" fill="#F3F4F6"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="120" y="85" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Impressions</text>

 <text x="120" y="102" font-size="8" fill="#6B7280" text-

anchor="middle">Event sequences</text>

 <text x="120" y="115" font-size="8" fill="#6B7280" text-

anchor="middle">Outcome labels</text>

 <text x="120" y="128" font-size="8" fill="#6B7280" text-

anchor="middle">Entity co-occurrence</text>

 <!-- Arrow -->

 <line x1="200" y1="100" x2="240" y2="100" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="240,100 235,97 235,103" fill="#6B7280"/>

 <!-- Detection Process -->

 <rect x="240" y="60" width="280" height="220" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="380" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Detection Process</text>

 <rect x="260" y="100" width="240" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="120" font-size="9" fill="#1E40AF" text-

anchor="middle">Analyze co-occurrence & sequences</text>

 <rect x="260" y="145" width="240" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="165" font-size="9" fill="#1E40AF" text-

anchor="middle">Correlate situations with outcomes</text>

 <rect x="260" y="190" width="240" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="210" font-size="9" fill="#1E40AF" text-

anchor="middle">Apply statistical thresholds</text>

 <rect x="260" y="235" width="240" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="255" font-size="9" fill="#1E40AF" text-

anchor="middle">Update pattern confidence</text>

 <!-- Arrow -->

 <line x1="520" y1="170" x2="560" y2="170" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="560,170 555,167 555,173" fill="#6B7280"/>

 <!-- Output: Patterns -->

 <rect x="560" y="60" width="160" height="220" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="4"/>

 <text x="640" y="85" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Detected Patterns</text>

 <rect x="575" y="100" width="130" height="50" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="640" y="118" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Pattern A</text>

 <text x="640" y="131" font-size="7" fill="#991B1B" text-

anchor="middle">Config change → Incident</text>

 <text x="640" y="143" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.85</text>

 <rect x="575" y="160" width="130" height="50" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="640" y="178" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Pattern B</text>

 <text x="640" y="191" font-size="7" fill="#991B1B" text-

anchor="middle">Rollback → Resolution</text>

 <text x="640" y="203" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.78</text>

 <rect x="575" y="220" width="130" height="50" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="640" y="238" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Pattern C</text>

 <text x="640" y="251" font-size="7" fill="#991B1B" text-

anchor="middle">Feature X → Churn risk</text>

 <text x="640" y="263" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.72</text>

 <!-- Learning Loop -->

 <rect x="40" y="290" width="680" height="30" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="380" y="310" font-size="9" fill="#374151" text-

anchor="middle" font-weight="600">Patterns reinforce with

consistent observations | Decay if contradicted | Min sample: 10,

Min confidence: 0.7</text>

 </svg>

</div>

<h3 id="nba-engine">2.7 Next Best Action Engine</h3>

<p>What it does: The Next Best Action (NBA)

Engine recommends actions based on assembled context, detected

patterns, and outcome predictions. It answers the question:

"Given what we know, what should happen next?" by ranking

candidate actions using pattern confidence, outcome

probabilities, and policy constraints. Recommendations include

action metadata (expected outcome, confidence score, supporting

evidence) and can operate in advisory mode (suggest only) or

gated execution mode (recommend and execute with approval).</p>

<p>Inputs: Context manifest from Context

Assembly Engine, detected patterns from Pattern Detection,

candidate actions (pre-defined action catalog or dynamically

generated), and tenant-specific NBA policies (risk tolerance,

approval requirements, action constraints).</p>

<p>Outputs: Ranked action recommendations with

confidence scores, expected outcome probabilities, supporting

evidence (patterns and impressions that justify recommendation),

and execution metadata (approval status, execution constraints,

rollback procedures).</p>

<p>Persistence model: NBA recommendations are

logged for audit with full provenance (input context, patterns

used, ranking logic, confidence scores). Executed actions are

tracked with outcome labels for reinforcement learning. NBA

policies (tenant-specific rules for action ranking, approval

thresholds, risk constraints) are stored in tenant configuration.

Recommendation history enables pattern analysis of NBA

effectiveness over time.</p>

<p>Operational behavior: NBA operates

synchronously with sub-300ms latency target. The engine retrieves

candidate actions from action catalog, scores each action using

pattern confidence and outcome predictions, applies policy

constraints (risk filters, approval requirements), ranks actions

by expected value, and returns top-k recommendations. NBA

supports simulation mode (preview recommendations without

execution) and shadow mode (recommend but do not execute, compare

with actual human decisions). Failures degrade gracefully—if

pattern queries timeout, NBA falls back to rule-based ranking.

</p>

<p>API touchpoints:</p>

 <code>POST /v1/nba/recommend</code> — Get action

recommendations for situation

 <code>POST /v1/nba/simulate</code> — Simulate

recommendations without logging

 <code>GET /v1/nba/policies</code> — Retrieve tenant NBA

policies

 <code>PUT /v1/nba/policies</code> — Update tenant NBA

policies

 <code>GET /v1/nba/history</code> — Retrieve recommendation

history

<p>How developers use it:</p>

 Define action catalog (available actions with parameters,

constraints, rollback procedures).

 Configure NBA policies per tenant (risk tolerance, approval

thresholds, action constraints).

 Call NBA recommend after context assembly to get ranked

action suggestions.

 Present recommendations to users (advisory mode) or execute

automatically (gated mode with approval).

 Capture outcome labels after action execution to reinforce

patterns and improve future recommendations.

 Use simulation mode during development to test NBA behavior

without affecting production.

 Monitor NBA metrics (recommendation latency, acceptance

rate, outcome accuracy) via observability dashboards.

<div class="diagram-container">

 <svg width="760" height="380" viewBox="0 0 760 380"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="360" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Next Best Action Engine</text>

 <!-- Inputs -->

 <rect x="40" y="60" width="140" height="100" fill="#F3F4F6"

stroke="#6B7280" stroke-width="1.5" rx="4"/>

 <text x="110" y="80" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Inputs</text>

 <text x="110" y="98" font-size="8" fill="#6B7280" text-

anchor="middle">Context manifest</text>

 <text x="110" y="111" font-size="8" fill="#6B7280" text-

anchor="middle">Detected patterns</text>

 <text x="110" y="124" font-size="8" fill="#6B7280" text-

anchor="middle">Candidate actions</text>

 <text x="110" y="137" font-size="8" fill="#6B7280" text-

anchor="middle">NBA policies</text>

 <!-- Arrow -->

 <line x1="180" y1="110" x2="220" y2="110" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="220,110 215,107 215,113" fill="#6B7280"/>

 <!-- Ranking Process -->

 <rect x="220" y="60" width="320" height="260" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="380" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Ranking Process</text>

 <rect x="240" y="100" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="120" font-size="9" fill="#1E40AF" text-

anchor="middle">1. Retrieve candidate actions from catalog</text>

 <rect x="240" y="145" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="165" font-size="9" fill="#1E40AF" text-

anchor="middle">2. Score actions using pattern confidence</text>

 <rect x="240" y="190" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="210" font-size="9" fill="#1E40AF" text-

anchor="middle">3. Apply policy constraints (risk, approval)

</text>

 <rect x="240" y="235" width="280" height="35" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="255" font-size="9" fill="#1E40AF" text-

anchor="middle">4. Rank by expected value & return top-k</text>

 <rect x="240" y="280" width="280" height="30" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="380" y="298" font-size="8" fill="#DC2626" text-

anchor="middle" font-weight="600">Modes: Advisory | Gated

Execution | Simulation | Shadow</text>

 <!-- Arrow -->

 <line x1="540" y1="190" x2="580" y2="190" stroke="#6B7280"

stroke-width="1.5"/>

 <polygon points="580,190 575,187 575,193" fill="#6B7280"/>

 <!-- Output: Recommendations -->

 <rect x="580" y="60" width="140" height="260" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="4"/>

 <text x="650" y="85" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Recommendations</text>

 <rect x="595" y="100" width="110" height="60" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="650" y="118" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Action 1: Rollback</text>

 <text x="650" y="131" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.88</text>

 <text x="650" y="143" font-size="7" fill="#991B1B" text-

anchor="middle">Expected: Resolution</text>

 <text x="650" y="155" font-size="7" fill="#991B1B" text-

anchor="middle">Evidence: Pattern B</text>

 <rect x="595" y="170" width="110" height="60" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="650" y="188" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Action 2: Escalate</text>

 <text x="650" y="201" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.72</text>

 <text x="650" y="213" font-size="7" fill="#991B1B" text-

anchor="middle">Expected: Human review</text>

 <text x="650" y="225" font-size="7" fill="#991B1B" text-

anchor="middle">Evidence: Pattern A</text>

 <rect x="595" y="240" width="110" height="60" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="650" y="258" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Action 3: Monitor</text>

 <text x="650" y="271" font-size="7" fill="#991B1B" text-

anchor="middle">Confidence: 0.65</text>

 <text x="650" y="283" font-size="7" fill="#991B1B" text-

anchor="middle">Expected: Wait & observe</text>

 <text x="650" y="295" font-size="7" fill="#991B1B" text-

anchor="middle">Evidence: Low risk</text>

 <!-- Target Latency -->

 <rect x="40" y="330" width="680" height="30" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="380" y="350" font-size="9" fill="#374151" text-

anchor="middle" font-weight="600">Target Latency: < 300ms |

Logged for audit | Outcome labels drive reinforcement

learning</text>

 </svg>

</div>

<h3 id="simulation-shadow">2.8 Simulation & Shadow Mode</h3>

<p>What it does: Simulation & Shadow Mode

enables safe testing and validation of memory-driven

recommendations before production deployment. Simulation mode

allows developers to test NBA recommendations against historical

scenarios without affecting live systems. Shadow mode runs NBA in

parallel with production workflows, comparing AI recommendations

with actual human decisions to measure accuracy, identify gaps,

and build confidence before enabling autonomous execution. Both

modes generate detailed comparison reports for validation and

tuning.</p>

<p>Inputs: Historical event logs (for

simulation), live production events (for shadow mode), human

decision labels (actual actions taken), and simulation/shadow

policies (comparison metrics, reporting thresholds, validation

criteria).</p>

<p>Outputs: Simulation reports (NBA

recommendations vs expected outcomes for historical scenarios),

shadow mode reports (NBA recommendations vs actual human

decisions with agreement rates, disagreement analysis, and

confidence distributions), and validation metrics (precision,

recall, F1 score for recommendation accuracy).</p>

<p>Persistence model: Simulation runs and shadow

mode sessions are logged with full provenance (input scenarios,

NBA recommendations, actual outcomes, comparison metrics).

Reports are retained for audit and compliance. Simulation

scenarios can be saved as test suites for regression testing.

Shadow mode data is anonymized for privacy and stored with tenant

isolation.</p>

<p>Operational behavior: Simulation runs

asynchronously as batch jobs, processing historical scenarios and

generating reports. Shadow mode runs synchronously in production,

observing live events and generating NBA recommendations without

executing them. Shadow recommendations are logged alongside

actual human decisions for comparison. Both modes support

configurable comparison metrics (exact match, semantic

similarity, outcome equivalence). Simulation and shadow mode do

not affect production memory state—recommendations are generated

but not reinforced.</p>

<p>API touchpoints:</p>

 <code>POST /v1/simulation/run</code> — Run simulation on

historical scenarios

 <code>GET /v1/simulation/reports</code> — Retrieve

simulation reports

 <code>POST /v1/shadow/enable</code> — Enable shadow mode

for tenant

 <code>POST /v1/shadow/disable</code> — Disable shadow

mode

 <code>GET /v1/shadow/reports</code> — Retrieve shadow mode

comparison reports

<p>How developers use it:</p>

 Create simulation test suites from historical production

scenarios (incidents, support tickets, operational events).

 Run simulations to validate NBA recommendations against

known outcomes before deploying new patterns or policies.

 Enable shadow mode in production to observe NBA behavior

alongside human decisions without risk.

 Review shadow mode reports to measure agreement rates and

identify scenarios where NBA disagrees with human judgment.

 Tune NBA policies and patterns based on simulation and

shadow mode feedback to improve accuracy.

 Use shadow mode as a gating criterion for autonomous

execution—require 90%+ agreement rate before enabling gated mode.

 Monitor simulation and shadow metrics (agreement rate,

confidence distribution, disagreement patterns) via observability

dashboards.

<div class="diagram-container">

 <svg width="760" height="360" viewBox="0 0 760 360"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="340" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Simulation & Shadow Mode</text>

 <!-- Simulation Mode -->

 <rect x="40" y="60" width="320" height="130" fill="#F0FDF4"

stroke="#10B981" stroke-width="2" rx="6"/>

 <text x="200" y="85" font-size="12" fill="#065F46" text-

anchor="middle" font-weight="700">Simulation Mode</text>

 <rect x="60" y="100" width="120" height="70" fill="#DCFCE7"

stroke="#10B981" stroke-width="1" rx="3"/>

 <text x="120" y="120" font-size="9" fill="#065F46" text-

anchor="middle" font-weight="600">Historical Scenarios</text>

 <text x="120" y="135" font-size="8" fill="#10B981" text-

anchor="middle">Past incidents</text>

 <text x="120" y="148" font-size="8" fill="#10B981" text-

anchor="middle">Support tickets</text>

 <text x="120" y="161" font-size="8" fill="#10B981" text-

anchor="middle">Known outcomes</text>

 <line x1="180" y1="135" x2="200" y2="135" stroke="#10B981"

stroke-width="1.5"/>

 <polygon points="200,135 195,132 195,138" fill="#10B981"/>

 <rect x="200" y="100" width="140" height="70" fill="#DCFCE7"

stroke="#10B981" stroke-width="1" rx="3"/>

 <text x="270" y="120" font-size="9" fill="#065F46" text-

anchor="middle" font-weight="600">NBA Recommendations</text>

 <text x="270" y="135" font-size="8" fill="#10B981" text-

anchor="middle">vs Expected outcomes</text>

 <text x="270" y="150" font-size="8" fill="#10B981" text-

anchor="middle">Accuracy metrics</text>

 <text x="270" y="163" font-size="8" fill="#10B981" text-

anchor="middle">No production impact</text>

 <!-- Shadow Mode -->

 <rect x="400" y="60" width="320" height="130" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="560" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Shadow Mode</text>

 <rect x="420" y="100" width="120" height="70" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="480" y="120" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">Live Production</text>

 <text x="480" y="135" font-size="8" fill="#3B82F6" text-

anchor="middle">Real-time events</text>

 <text x="480" y="148" font-size="8" fill="#3B82F6" text-

anchor="middle">Human decisions</text>

 <text x="480" y="161" font-size="8" fill="#3B82F6" text-

anchor="middle">Actual outcomes</text>

 <line x1="540" y1="135" x2="560" y2="135" stroke="#3B82F6"

stroke-width="1.5"/>

 <polygon points="560,135 555,132 555,138" fill="#3B82F6"/>

 <rect x="560" y="100" width="140" height="70" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="630" y="120" font-size="9" fill="#1E40AF" text-

anchor="middle" font-weight="600">NBA Recommendations</text>

 <text x="630" y="135" font-size="8" fill="#3B82F6" text-

anchor="middle">vs Human decisions</text>

 <text x="630" y="150" font-size="8" fill="#3B82F6" text-

anchor="middle">Agreement rate</text>

 <text x="630" y="163" font-size="8" fill="#3B82F6" text-

anchor="middle">Observe only</text>

 <!-- Comparison Reports -->

 <rect x="40" y="210" width="680" height="100" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="380" y="235" font-size="12" fill="#DC2626" text-

anchor="middle" font-weight="700">Comparison Reports</text>

 <rect x="60" y="250" width="200" height="45" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="160" y="268" font-size="9" fill="#991B1B" text-

anchor="middle" font-weight="600">Agreement Rate: 87%</text>

 <text x="160" y="283" font-size="8" fill="#991B1B" text-

anchor="middle">High confidence matches: 92%</text>

 <rect x="280" y="250" width="200" height="45" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="380" y="268" font-size="9" fill="#991B1B" text-

anchor="middle" font-weight="600">Disagreement Analysis</text>

 <text x="380" y="283" font-size="8" fill="#991B1B" text-

anchor="middle">NBA more conservative: 8%</text>

 <rect x="500" y="250" width="200" height="45" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="600" y="268" font-size="9" fill="#991B1B" text-

anchor="middle" font-weight="600">Validation Metrics</text>

 <text x="600" y="283" font-size="8" fill="#991B1B" text-

anchor="middle">Precision: 0.89 | Recall: 0.85</text>

 <!-- Deployment Gate -->

 <rect x="40" y="320" width="680" height="30" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="380" y="340" font-size="9" fill="#374151" text-

anchor="middle" font-weight="600">Deployment Gate: Require 90%+

shadow agreement before enabling autonomous execution</text>

 </svg>

</div>

<h3 id="governance-safety">2.9 Governance, Controls & Safety</h3>

<p>What it does: The Governance, Controls &

Safety component enforces organizational policies, regulatory

compliance, and safety constraints across the memory and action

lifecycle. It provides mechanisms for memory retention policies,

data decay and deletion, action approval workflows, escalation

rules, audit trails, and emergency controls (freeze, rollback,

circuit breakers). This component ensures that memory-driven AI

operates within acceptable risk boundaries and maintains

compliance with enterprise governance requirements.</p>

<p>Inputs: Governance policies (retention,

decay, approval thresholds, escalation rules), compliance

requirements (GDPR, SOC2, industry-specific regulations), risk

classifications (action risk levels, memory sensitivity labels),

and audit queries (compliance reports, forensic investigations).

</p>

<p>Outputs: Policy enforcement decisions

(approve, deny, escalate), audit logs (immutable records of all

memory operations and action executions), compliance reports

(retention compliance, access logs, data lineage), and emergency

control confirmations (freeze acknowledgments, rollback results,

circuit breaker status).</p>

<p>Persistence model: Governance policies are

versioned and stored in tenant configuration with effective dates

and change history. Audit logs are append-only and immutable,

stored in compliance-grade storage with tamper detection.

Retention metadata is attached to every impression and pattern,

triggering automated deletion when retention periods expire.

Emergency control states (freeze, rollback checkpoints) are

persisted for disaster recovery.</p>

<p>Operational behavior: Policy enforcement runs

synchronously at decision points (memory write, pattern update,

action execution). Retention enforcement runs asynchronously as

scheduled jobs, scanning for expired memories and executing

deletion. Audit logging is asynchronous with guaranteed delivery—

logs are buffered and retried on failure. Emergency controls

(freeze, rollback) are synchronous and prioritized, blocking all

writes until released. Compliance reports are generated on-demand

or scheduled (monthly, quarterly). The system supports multi-

level approval workflows with escalation paths and timeout

policies.</p>

<p>API touchpoints:</p>

 <code>GET /v1/governance/policies</code> — Retrieve

governance policies

 <code>PUT /v1/governance/policies</code> — Update

governance policies

 <code>POST /v1/governance/freeze</code> — Freeze memory

updates (emergency control)

 <code>POST /v1/governance/unfreeze</code> — Release

freeze

 <code>POST /v1/governance/rollback</code> — Rollback to

checkpoint

 <code>GET /v1/audit/logs</code> — Query audit logs

 <code>GET /v1/audit/compliance</code> — Generate compliance

report

<p>How developers use it:</p>

 Configure governance policies per tenant (retention: 2

years, decay: 30-day half-life, approval threshold: high-risk

actions).

 Define action risk classifications (low, medium, high) with

corresponding approval workflows.

 Implement escalation rules (timeout after 1 hour → escalate

to manager, timeout after 4 hours → auto-deny).

 Use freeze control during incident response to prevent

memory updates from contaminating forensic analysis.

 Execute rollback to restore memory state to known-good

checkpoint after detecting data corruption or policy violations.

 Query audit logs for compliance reporting, security

investigations, and operational forensics.

 Monitor governance metrics (policy violations, approval

latency, retention compliance rate) via observability dashboards.

<div class="diagram-container">

 <svg width="760" height="400" viewBox="0 0 760 400"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="380" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Governance, Controls &

Safety</text>

 <!-- Policy Enforcement -->

 <rect x="40" y="60" width="210" height="150" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="145" y="85" font-size="11" fill="#DC2626" text-

anchor="middle" font-weight="700">Policy Enforcement</text>

 <rect x="60" y="100" width="170" height="30" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="145" y="118" font-size="8" fill="#991B1B" text-

anchor="middle">Retention & Decay</text>

 <rect x="60" y="140" width="170" height="30" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="145" y="158" font-size="8" fill="#991B1B" text-

anchor="middle">Approval Workflows</text>

 <rect x="60" y="180" width="170" height="30" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="145" y="198" font-size="8" fill="#991B1B" text-

anchor="middle">Escalation Rules</text>

 <!-- Audit & Compliance -->

 <rect x="270" y="60" width="210" height="150" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="375" y="85" font-size="11" fill="#1E40AF" text-

anchor="middle" font-weight="700">Audit & Compliance</text>

 <rect x="290" y="100" width="170" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="375" y="118" font-size="8" fill="#1E40AF" text-

anchor="middle">Immutable Audit Logs</text>

 <rect x="290" y="140" width="170" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="375" y="158" font-size="8" fill="#1E40AF" text-

anchor="middle">Compliance Reports</text>

 <rect x="290" y="180" width="170" height="30" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="375" y="198" font-size="8" fill="#1E40AF" text-

anchor="middle">Data Lineage</text>

 <!-- Emergency Controls -->

 <rect x="500" y="60" width="220" height="150" fill="#FEF3C7"

stroke="#F59E0B" stroke-width="2" rx="6"/>

 <text x="610" y="85" font-size="11" fill="#92400E" text-

anchor="middle" font-weight="700">Emergency Controls</text>

 <rect x="520" y="100" width="180" height="30" fill="#FEF9C3"

stroke="#F59E0B" stroke-width="1" rx="3"/>

 <text x="610" y="118" font-size="8" fill="#92400E" text-

anchor="middle" font-weight="600">Freeze (block writes)</text>

 <rect x="520" y="140" width="180" height="30" fill="#FEF9C3"

stroke="#F59E0B" stroke-width="1" rx="3"/>

 <text x="610" y="158" font-size="8" fill="#92400E" text-

anchor="middle" font-weight="600">Rollback (restore checkpoint)

</text>

 <rect x="520" y="180" width="180" height="30" fill="#FEF9C3"

stroke="#F59E0B" stroke-width="1" rx="3"/>

 <text x="610" y="198" font-size="8" fill="#92400E" text-

anchor="middle" font-weight="600">Circuit Breaker</text>

 <!-- Compliance Standards -->

 <rect x="40" y="230" width="680" height="80" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="6"/>

 <text x="380" y="255" font-size="11" fill="#374151" text-

anchor="middle" font-weight="700">Compliance Standards</text>

 <rect x="60" y="270" width="140" height="30" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="1" rx="3"/>

 <text x="130" y="288" font-size="8" fill="#6B7280" text-

anchor="middle">GDPR (data deletion)</text>

 <rect x="220" y="270" width="140" height="30" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="1" rx="3"/>

 <text x="290" y="288" font-size="8" fill="#6B7280" text-

anchor="middle">SOC 2 (audit trails)</text>

 <rect x="380" y="270" width="140" height="30" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="1" rx="3"/>

 <text x="450" y="288" font-size="8" fill="#6B7280" text-

anchor="middle">HIPAA (data sensitivity)</text>

 <rect x="540" y="270" width="160" height="30" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="1" rx="3"/>

 <text x="620" y="288" font-size="8" fill="#6B7280" text-

anchor="middle">Industry-specific</text>

 <!-- Governance Flow -->

 <rect x="40" y="330" width="680" height="50" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1" rx="4"/>

 <text x="380" y="350" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Governance Flow</text>

 <text x="380" y="368" font-size="8" fill="#991B1B" text-

anchor="middle">Policy check → Approval (if required) → Audit log

→ Execute → Outcome log → Retention enforcement</text>

 </svg>

</div>

<h3 id="platform-apis">2.10 Platform APIs & Integration

Surface</h3>

<p>What it does: The Platform APIs & Integration

Surface provides a comprehensive RESTful API layer for external

systems to interact with Fabric Mind. It exposes all platform

capabilities—event ingestion, context assembly, NBA

recommendations, governance controls, and audit queries—through

versioned, documented, and rate-limited endpoints. The

integration surface includes SDKs (Python, JavaScript, Go),

webhooks for event-driven integration, and batch APIs for high-

throughput scenarios. This component ensures that Fabric Mind

integrates seamlessly into existing enterprise architectures.</p>

<p>Inputs: API requests from external systems

(agent frameworks, workflow orchestrators, observability

platforms, business applications), authentication tokens (service

identity, user SSO), and integration configurations (webhook

URLs, batch schedules, rate limits).</p>

<p>Outputs: API responses with structured

payloads (JSON), error messages with actionable guidance, webhook

notifications for asynchronous events, and integration health

metrics (API latency, error rates, quota usage).</p>

<p>Persistence model: API request logs are

retained for debugging and billing. Integration configurations

(webhook URLs, API keys, rate limits) are stored in tenant

configuration. API usage metrics are aggregated for billing and

capacity planning. Webhook delivery receipts are logged for

reliability tracking.</p>

<p>Operational behavior: APIs are synchronous

with sub-500ms latency targets (event ingestion, context

assembly, NBA recommend). Batch APIs are asynchronous with job

status tracking. Webhooks are fire-and-forget with retry logic

(exponential backoff, max 3 retries). Rate limiting is enforced

per tenant with configurable quotas (default: 1000

requests/minute). API versioning follows semantic versioning with

backward compatibility guarantees. The integration surface

supports OpenAPI specifications for auto-generated client

libraries.</p>

<p>API touchpoints:</p>

 <code>POST /v1/events</code> — Ingest events (single or

batch)

 <code>POST /v1/context/assemble</code> — Assemble context

for reasoning

 <code>POST /v1/nba/recommend</code> — Get action

recommendations

 <code>POST /v1/actions/execute</code> — Execute gated

action

 <code>GET /v1/audit/logs</code> — Query audit logs

 <code>POST /v1/webhooks/register</code> — Register webhook

for events

 <code>GET /v1/health</code> — Health check endpoint

 <code>GET /v1/metrics</code> — Integration health

metrics

<p>How developers use it:</p>

 Authenticate using service identity tokens (OAuth 2.0

client credentials flow) or user SSO (OIDC).

 Install SDK for preferred language (Python, JavaScript, Go)

or use raw REST API with OpenAPI spec.

 Integrate event ingestion into existing observability

pipelines (send logs, metrics, traces to Fabric Mind).

 Call context assembly before invoking reasoning engine to

inject memory-driven context.

 Use NBA recommend to get action suggestions and present to

users or execute autonomously (gated mode).

 Register webhooks to receive notifications for asynchronous

events (pattern detected, approval required, action completed).

 Monitor API usage metrics (latency, error rate, quota

consumption) via observability dashboards.

 Use batch APIs for high-throughput scenarios (bulk event

ingestion, historical data backfill).

<div class="diagram-container">

 <svg width="760" height="420" viewBox="0 0 760 420"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="400" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Platform APIs & Integration

Surface</text>

 <!-- External Systems -->

 <rect x="40" y="60" width="680" height="80" fill="#F3F4F6"

stroke="#6B7280" stroke-width="2" rx="6"/>

 <text x="380" y="85" font-size="11" fill="#374151" text-

anchor="middle" font-weight="700">External Systems</text>

 <rect x="60" y="100" width="130" height="30" fill="#FFFFFF"

stroke="#6B7280" stroke-width="1" rx="3"/>

 <text x="125" y="118" font-size="8" fill="#6B7280" text-

anchor="middle">Agent Frameworks</text>

 <rect x="210" y="100" width="130" height="30" fill="#FFFFFF"

stroke="#6B7280" stroke-width="1" rx="3"/>

 <text x="275" y="118" font-size="8" fill="#6B7280" text-

anchor="middle">Workflow Orchestrators</text>

 <rect x="360" y="100" width="130" height="30" fill="#FFFFFF"

stroke="#6B7280" stroke-width="1" rx="3"/>

 <text x="425" y="118" font-size="8" fill="#6B7280" text-

anchor="middle">Observability Platforms</text>

 <rect x="510" y="100" width="130" height="30" fill="#FFFFFF"

stroke="#6B7280" stroke-width="1" rx="3"/>

 <text x="575" y="118" font-size="8" fill="#6B7280" text-

anchor="middle">Business Applications</text>

 <!-- Arrow Down -->

 <line x1="380" y1="140" x2="380" y2="170" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="380,170 377,165 383,165" fill="#6B7280"/>

 <!-- API Layer -->

 <rect x="40" y="170" width="680" height="180" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="380" y="195" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">RESTful API Layer</text>

 <!-- Core APIs -->

 <rect x="60" y="210" width="200" height="130" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="4"/>

 <text x="160" y="230" font-size="10" fill="#1E40AF" text-

anchor="middle" font-weight="600">Core APIs</text>

 <text x="160" y="250" font-size="8" fill="#3B82F6" text-

anchor="middle">POST /v1/events</text>

 <text x="160" y="265" font-size="8" fill="#3B82F6" text-

anchor="middle">POST /v1/context/assemble</text>

 <text x="160" y="280" font-size="8" fill="#3B82F6" text-

anchor="middle">POST /v1/nba/recommend</text>

 <text x="160" y="295" font-size="8" fill="#3B82F6" text-

anchor="middle">POST /v1/actions/execute</text>

 <text x="160" y="310" font-size="8" fill="#3B82F6" text-

anchor="middle">GET /v1/audit/logs</text>

 <text x="160" y="328" font-size="7" fill="#1E40AF" text-

anchor="middle" font-style="italic">Latency: < 500ms</text>

 <!-- Integration Features -->

 <rect x="280" y="210" width="200" height="130" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="4"/>

 <text x="380" y="230" font-size="10" fill="#1E40AF" text-

anchor="middle" font-weight="600">Integration Features</text>

 <text x="380" y="250" font-size="8" fill="#3B82F6" text-

anchor="middle">SDKs (Python, JS, Go)</text>

 <text x="380" y="265" font-size="8" fill="#3B82F6" text-

anchor="middle">Webhooks (event-driven)</text>

 <text x="380" y="280" font-size="8" fill="#3B82F6" text-

anchor="middle">Batch APIs (high-throughput)</text>

 <text x="380" y="295" font-size="8" fill="#3B82F6" text-

anchor="middle">OpenAPI Spec</text>

 <text x="380" y="310" font-size="8" fill="#3B82F6" text-

anchor="middle">Rate Limiting (1K req/min)</text>

 <text x="380" y="328" font-size="7" fill="#1E40AF" text-

anchor="middle" font-style="italic">Versioned & Documented</text>

 <!-- Auth & Security -->

 <rect x="500" y="210" width="200" height="130" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="4"/>

 <text x="600" y="230" font-size="10" fill="#1E40AF" text-

anchor="middle" font-weight="600">Auth & Security</text>

 <text x="600" y="250" font-size="8" fill="#3B82F6" text-

anchor="middle">OAuth 2.0 (service tokens)</text>

 <text x="600" y="265" font-size="8" fill="#3B82F6" text-

anchor="middle">OIDC (user SSO)</text>

 <text x="600" y="280" font-size="8" fill="#3B82F6" text-

anchor="middle">Tenant isolation</text>

 <text x="600" y="295" font-size="8" fill="#3B82F6" text-

anchor="middle">API key rotation</text>

 <text x="600" y="310" font-size="8" fill="#3B82F6" text-

anchor="middle">TLS 1.3</text>

 <text x="600" y="328" font-size="7" fill="#1E40AF" text-

anchor="middle" font-style="italic">Enterprise-grade

security</text>

 <!-- Arrow Down -->

 <line x1="380" y1="350" x2="380" y2="370" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="380,370 377,365 383,365" fill="#6B7280"/>

 <!-- Fabric Mind Platform -->

 <rect x="40" y="370" width="680" height="30" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="4"/>

 <text x="380" y="390" font-size="10" fill="#DC2626" text-

anchor="middle" font-weight="600">Fabric Mind Platform (Memory

Store, Context Assembly, NBA, Governance)</text>

 </svg>

</div>

<h2 id="developer-access">3. Developer Access &

Implementation</h2>

<h3 id="auth-identity">Authentication & Identity</h3>

<p>Fabric Mind supports enterprise-grade authentication and

identity management to ensure secure access for both human users

and automated services. The platform integrates with existing

identity providers through standard protocols, enabling seamless

adoption without requiring new credential management

infrastructure.</p>

<p>SSO/OIDC for Humans: Human users authenticate

via Single Sign-On (SSO) using OpenID Connect (OIDC). Fabric Mind

acts as a relying party, delegating authentication to the

organization's identity provider (Okta, Azure AD, Google

Workspace, etc.). After successful authentication, users receive

JWT tokens with claims (user ID, email, roles, tenant ID) that

govern API access and UI permissions. Token lifetime is

configurable (default: 1 hour with refresh tokens valid for 7

days). Multi-factor authentication (MFA) enforcement is inherited

from the identity provider.</p>

<p>Service Identity Tokens for Services:

Automated services (agent frameworks, workflow orchestrators,

batch jobs) authenticate using OAuth 2.0 client credentials flow.

Services are issued client IDs and secrets (rotatable API keys)

that are exchanged for short-lived access tokens (default: 15

minutes). Service tokens include tenant ID and permission scopes

(read-only, write, admin) that restrict API access. Token

rotation is automated with grace periods to prevent service

disruption during key updates.</p>

<p>Tenant Isolation: All API requests are scoped

to a tenant ID derived from authentication tokens. Tenant

isolation is enforced at every layer: memory queries cannot

access other tenants' data, context assembly respects tenant

boundaries, NBA recommendations are tenant-specific, and audit

logs are segregated by tenant. Multi-tenant deployments use

logical isolation with per-tenant encryption keys. Dedicated

tenant deployments provide physical isolation with separate

infrastructure.</p>

<p>Permission-Aware Retrieval and Action Execution:

 Context assembly and NBA recommendations respect user

permissions. If a user lacks permission to view certain memories

(e.g., sensitive customer data), those impressions are filtered

from context manifests. Similarly, NBA recommendations exclude

actions the user is not authorized to execute. Permission checks

are performed at query time using role-based access control

(RBAC) policies configured per tenant.</p>

<h3 id="integration-patterns">Integration Patterns</h3>

<p>Fabric Mind provides five core integration patterns that cover

the full memory lifecycle: event ingestion, context assembly,

action recommendation, gated execution, and audit querying. Each

pattern includes request/response examples with JSON payloads to

accelerate integration development.</p>

<h4>A) Event Ingestion</h4>

<p>Ingest events from observability pipelines, application logs,

user interactions, or business transactions. Events can be sent

individually or in batches for high-throughput scenarios. Each

event includes a type, timestamp, entities, and optional metadata

for provenance tracking.</p>

<pre><code>POST /v1/events

Content-Type: application/json Authorization: Bearer {access_token}

{ “events”: [

{

 "event_id": "evt_abc123",

 "event_type": "incident.detected",

 "timestamp": "2026-01-09T14:30:00Z",

 "entities": {

 "service": "payment-api",

 "severity": "high",

 "error_code": "500"

 },

 "context": {

 "deployment_id": "deploy_xyz789",

 "region": "us-west-2"

 },

 "metadata": {

 "source": "datadog",

 "trace_id": "trace_456def"

 }

}

] }

Response: { “status”: “accepted”, “ingested_count”: 1, “impression_ids”:

[“imp_789ghi”] }

<h4>B) Context Assembly</h4>

<p>Assemble relevant context for a reasoning engine by querying

memory with a situation signature. The response includes a

bounded manifest of relevant impressions, graph-connected

memories, confidence scores, and provenance metadata. The

manifest is designed to fit within reasoning token budgets while

maximizing relevance.</p>

<pre><code>POST /v1/context/assemble

Content-Type: application/json Authorization: Bearer {access_token}

{ “situation”: {

"event_type": "incident.detected",

"entities": {

 "service": "payment-api",

 "severity": "high"

}

}, “query_params”: {

"similarity_threshold": 0.7,

"temporal_window_days": 30,

"max_results": 20,

"graph_depth": 2

} }

Response: { “manifest_id”: “manifest_ jkl012”, “impressions”: [

{

 "impression_id": "imp_345mno",

 "similarity_score": 0.92,

 "freshness_days": 7,

 "confidence": 0.88,

 "entities": {

 "service": "payment-api",

 "action": "rollback",

 "outcome": "resolved"

 },

 "provenance": {

 "timestamp": "2026-01-02T10:15:00Z",

 "source": "incident_response"

 }

}

], “graph_connected”: [

{

 "impression_id": "imp_678pqr",

 "relationship": "causal",

 "confidence": 0.85

}

], “metadata”: {

"result_count": 12,

"truncated": false,

"assembly_latency_ms": 145

} }

<h4>C) NBA Recommend</h4>

<p>Get ranked action recommendations based on assembled context

and detected patterns. Recommendations include confidence scores,

expected outcomes, and supporting evidence. Use advisory mode to

present suggestions to users or gated mode for autonomous

execution with approval.</p>

<pre><code>POST /v1/nba/recommend

Content-Type: application/json Authorization: Bearer {access_token}

{ “manifest_id”: “manifest_ jkl012”, “candidate_actions”: [

"rollback_deployment",

"escalate_to_oncall",

"restart_service",

"monitor_and_wait"

], “mode”: “advisory” }

Response: { “recommendations”: [

{

 "action": "rollback_deployment",

 "confidence": 0.88,

 "expected_outcome": "incident_resolved",

 "outcome_probability": 0.82,

 "supporting_evidence": [

 {

 "pattern_id": "pattern_stu901",

 "description": "Rollback resolves payment-api incidents 82%

of the time",

 "confidence": 0.85

 }

],

 "execution_metadata": {

 "approval_required": false,

 "risk_level": "medium",

 "rollback_procedure": "revert_to_previous_version"

 }

},

{

 "action": "escalate_to_oncall",

 "confidence": 0.72,

 "expected_outcome": "human_review",

 "outcome_probability": 0.95,

 "supporting_evidence": [

 {

 "pattern_id": "pattern_vwx234",

 "description": "High-severity incidents benefit from human

review",

 "confidence": 0.78

 }

],

 "execution_metadata": {

 "approval_required": true,

 "risk_level": "low"

 }

}

] }

<h4>D) Gated Execute</h4>

<p>Execute an action with approval workflow. Gated execution

requires explicit approval for high-risk actions, logs the

execution for audit, and captures outcome labels for

reinforcement learning. Execution can be synchronous (wait for

completion) or asynchronous (return job ID).</p>

<pre><code>POST /v1/actions/execute

Content-Type: application/json Authorization: Bearer {access_token}

{ “action”: “rollback_deployment”, “parameters”: {

"service": "payment-api",

"target_version": "v1.2.3"

}, “approval”: {

"approved_by": "user@example.com",

"approval_timestamp": "2026-01-09T14:35:00Z"

}, “execution_mode”: “synchronous” }

Response: { “execution_id”: “exec_yza567”, “status”: “completed”, “outcome”:

“success”, “outcome_label”: “incident_resolved”, “execution_log”: {

"started_at": "2026-01-09T14:35:05Z",

"completed_at": "2026-01-09T14:37:12Z",

"duration_seconds": 127

}, “audit_trail_id”: “audit_bcd890” }

<h4>E) Audit Query</h4>

<p>Query audit logs for compliance reporting, security

investigations, or operational forensics. Audit logs are

immutable and include full provenance for all memory operations

and action executions. Queries support filtering by time range,

event type, user, and tenant.</p>

<pre><code>GET /v1/audit/logs?start_time=2026-01-

01T00:00:00Z&end_time=2026-01-

09T23:59:59Z&event_type=action.executed&limit=100

Authorization: Bearer {access_token}

Response: { “logs”: [

{

 "audit_id": "audit_bcd890",

 "timestamp": "2026-01-09T14:35:05Z",

 "event_type": "action.executed",

 "user_id": "user@example.com",

 "tenant_id": "tenant_123",

 "action": "rollback_deployment",

 "outcome": "success",

 "metadata": {

 "execution_id": "exec_yza567",

 "approval_required": false,

 "risk_level": "medium"

 }

}

], “pagination”: {

"total_count": 1,

"next_cursor": null

} }

<h3 id="implementation-playbooks">Implementation Playbooks</h3>

<p>The following playbooks provide step-by-step implementation

guidance for three common agentic AI use cases: Customer Support,

Incident/Ops, and Coding/DevEx agents. Each playbook covers event

sources, outcomes to capture, context assembly integration, safe

rollout strategy, and ROI measurement.</p>

<h4>Playbook 1: Customer Support Agent</h4>

<p>Event Sources: Support ticket creation

(Zendesk, Intercom, Salesforce Service Cloud), customer

interactions (chat transcripts, email threads), resolution

actions (ticket closed, escalated, reassigned), and customer

feedback (CSAT scores, follow-up tickets).</p>

<p>Outcomes to Capture: Resolution success

(ticket resolved without escalation), resolution time (time to

first response, time to resolution), customer satisfaction (CSAT

score, NPS), and escalation rate (percentage of tickets escalated

to human agents).</p>

<p>Context Assembly Integration: Before

generating a response, call <code>POST

/v1/context/assemble</code> with the current ticket signature

(customer ID, issue category, product area). The context manifest

includes similar past tickets, successful resolution patterns,

and customer history (previous issues, preferences, sentiment).

Inject this context into the reasoning prompt to ground responses

in organizational memory.</p>

<p>Safe Rollout Strategy:</p>

 Shadow Mode (Week 1-2): Enable shadow mode

to observe NBA recommendations alongside human agent decisions.

Measure agreement rate (target: 80%+). Identify scenarios where

NBA disagrees with human judgment and tune patterns accordingly.

 Gated Mode - Low Risk (Week 3-4): Enable

gated execution for low-risk actions (send knowledge base

article, request additional information). Require human approval

for medium/high-risk actions (issue refund, escalate to

engineering). Monitor outcome accuracy and customer satisfaction.

 Expand Autonomy (Week 5-8): Gradually

expand autonomous execution to medium-risk actions as confidence

grows (agreement rate > 90%, CSAT maintained or improved).

Maintain human-in-the-loop for high-risk actions (account

changes, policy exceptions).

 Full Production (Week 9+): Operate in

advisory mode for complex cases and autonomous mode for routine

cases. Continuously monitor ROI metrics and tune patterns based

on outcome feedback.

<p>ROI Measurement: Track Average Handle Time

(AHT) reduction (target: 20-30% decrease), First Contact

Resolution (FCR) improvement (target: 10-15% increase),

escalation rate reduction (target: 15-25% decrease), and CSAT

maintenance or improvement (target: maintain baseline or +5%

improvement). Calculate cost savings based on AHT reduction

multiplied by agent hourly cost and ticket volume.</p>

<h4>Playbook 2: Incident/Ops Agent</h4>

<p>Event Sources: Incident detection (PagerDuty,

Datadog, New Relic), deployment events (CI/CD pipelines,

Kubernetes rollouts), configuration changes (Terraform, Ansible),

resolution actions (rollback, restart, scale-up), and post-

incident reviews (RCA documents, action items).</p>

<p>Outcomes to Capture: Incident resolution

success (incident resolved without escalation), Mean Time To

Resolution (MTTR), false positive rate (alerts that did not

require action), and action effectiveness (percentage of

recommended actions that resolved incidents).</p>

<p>Context Assembly Integration: When an

incident is detected, call <code>POST /v1/context/assemble</code>

with the incident signature (service, error code, severity). The

context manifest includes similar past incidents, successful

resolution patterns (e.g., "rollback resolves payment-api 500

errors 85% of the time"), and causal relationships (e.g., "config

changes on Fridays correlate with incidents"). Use this context

to prioritize NBA recommendations and accelerate triage.</p>

<p>Safe Rollout Strategy:</p>

 Shadow Mode (Week 1-3): Run NBA in shadow

mode during incident response. Compare NBA recommendations with

actual on-call engineer decisions. Measure agreement rate

(target: 75%+) and identify gaps in pattern detection or context

assembly.

 Gated Mode - Low Risk (Week 4-6): Enable

gated execution for low-risk actions (collect diagnostic logs,

restart non-critical services). Require approval for medium/high-

risk actions (rollback production deployments, scale down

services). Monitor MTTR and false positive rate.

 Expand Autonomy (Week 7-10): Expand

autonomous execution to medium-risk actions as confidence grows

(agreement rate > 85%, MTTR improved). Maintain human approval

for high-risk actions (database rollbacks, cross-region

failovers).

 Full Production (Week 11+): Operate in

autonomous mode for routine incidents (known patterns with high

confidence) and advisory mode for novel incidents. Continuously

refine patterns based on post-incident reviews.

<p>ROI Measurement: Track MTTR reduction

(target: 30-40% decrease), on-call engineer toil reduction

(target: 25-35% decrease in manual interventions), false positive

rate reduction (target: 20-30% decrease), and incident recurrence

rate (target: 15-20% decrease). Calculate cost savings based on

reduced on-call hours and prevented downtime costs.</p>

<h4>Playbook 3: Coding/DevEx Agent</h4>

<p>Event Sources: Code review requests (GitHub,

GitLab pull requests), build failures (CI/CD pipelines),

developer questions (Slack, internal forums), code changes

(commits, diffs), and resolution actions (code suggestions,

documentation links, automated fixes).</p>

<p>Outcomes to Capture: Code review quality

(suggestions accepted by developers), build fix success (build

passes after applying suggestion), developer satisfaction

(feedback on suggestion quality), and time to resolution (time

from question to answer, time from build failure to fix).</p>

<p>Context Assembly Integration: When a

developer asks a question or a build fails, call <code>POST

/v1/context/assemble</code> with the query signature (code

context, error message, repository). The context manifest

includes similar past issues, successful resolution patterns

(e.g., "dependency version mismatches resolved by updating

package.json"), and relevant documentation. Use this context to

generate grounded code suggestions and accelerate developer

workflows.</p>

<p>Safe Rollout Strategy:</p>

 Shadow Mode (Week 1-2): Run NBA in shadow

mode for code review and build failures. Compare NBA suggestions

with actual developer actions. Measure agreement rate (target:

70%+) and identify areas where suggestions are off-target.

 Advisory Mode (Week 3-6): Present NBA

suggestions to developers as recommendations (not automated

fixes). Track acceptance rate (target: 60%+) and gather developer

feedback to tune patterns and improve suggestion quality.

 Gated Automation (Week 7-10): Enable

automated fixes for low-risk issues (formatting, linting,

dependency updates) with developer review. Require manual

approval for medium/high-risk changes (logic changes, API

modifications). Monitor build success rate and developer

satisfaction.

 Full Production (Week 11+): Operate in

autonomous mode for routine fixes and advisory mode for complex

changes. Continuously refine patterns based on developer feedback

and code review outcomes.

<p>ROI Measurement: Track developer productivity

improvement (target: 15-25% reduction in time spent on routine

tasks), build fix time reduction (target: 40-50% decrease in time

to fix build failures), code review cycle time reduction (target:

20-30% decrease), and developer satisfaction (target: maintain

baseline or +10% improvement). Calculate cost savings based on

developer time saved multiplied by developer hourly cost.</p>

<h3 id="integration-loop">Integration Loop Diagram</h3>

<p>The following diagram illustrates the end-to-end integration

loop for memory-driven agentic AI, showing how events flow

through Fabric Mind, how context is assembled for reasoning, how

actions are recommended and executed, and how outcomes feed back

into memory for continuous learning.</p>

<div class="diagram-container">

 <svg width="760" height="480" viewBox="0 0 760 480"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="460" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">End-to-End Integration

Loop</text>

 <!-- External System -->

 <rect x="40" y="60" width="140" height="60" fill="#F3F4F6"

stroke="#6B7280" stroke-width="2" rx="4"/>

 <text x="110" y="85" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">External System</text>

 <text x="110" y="100" font-size="8" fill="#6B7280" text-

anchor="middle">Agent / Workflow</text>

 <!-- Arrow: Event Ingestion -->

 <line x1="180" y1="90" x2="220" y2="90" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="220,90 215,87 215,93" fill="#6B7280"/>

 <text x="200" y="85" font-size="8" fill="#6B7280" text-

anchor="middle">1. Ingest</text>

 <!-- Fabric Mind: Event Processing -->

 <rect x="220" y="60" width="320" height="360" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="380" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Fabric Mind Platform</text>

 <!-- Step 1: Impression Engine -->

 <rect x="240" y="100" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="123" font-size="9" fill="#1E40AF" text-

anchor="middle">Impression Engine → Memory Store</text>

 <!-- Step 2: Context Assembly -->

 <rect x="240" y="150" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="173" font-size="9" fill="#1E40AF" text-

anchor="middle">Context Assembly (query memory + graph)</text>

 <!-- Step 3: Pattern Detection -->

 <rect x="240" y="200" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="223" font-size="9" fill="#1E40AF" text-

anchor="middle">Pattern Detection (correlations + trends)</text>

 <!-- Step 4: NBA Recommend -->

 <rect x="240" y="250" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="273" font-size="9" fill="#1E40AF" text-

anchor="middle">NBA Recommend (rank actions)</text>

 <!-- Step 5: Governance Check -->

 <rect x="240" y="300" width="280" height="40" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="380" y="323" font-size="9" fill="#DC2626" text-

anchor="middle" font-weight="600">Governance Check (approval if

required)</text>

 <!-- Step 6: Action Execute -->

 <rect x="240" y="350" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="380" y="373" font-size="9" fill="#1E40AF" text-

anchor="middle">Action Execute (gated or advisory)</text>

 <!-- Arrow: Context + Recommendations -->

 <line x1="540" y1="220" x2="580" y2="220" stroke="#6B7280"

stroke-width="2"/>

 <polygon points="580,220 575,217 575,223" fill="#6B7280"/>

 <text x="560" y="215" font-size="8" fill="#6B7280" text-

anchor="middle">2. Context</text>

 <text x="560" y="227" font-size="8" fill="#6B7280" text-

anchor="middle">+ NBA</text>

 <!-- External System: Reasoning + Action -->

 <rect x="580" y="180" width="140" height="80" fill="#F3F4F6"

stroke="#6B7280" stroke-width="2" rx="4"/>

 <text x="650" y="205" font-size="10" fill="#374151" text-

anchor="middle" font-weight="600">Reasoning Engine</text>

 <text x="650" y="220" font-size="8" fill="#6B7280" text-

anchor="middle">+ Action Execution</text>

 <text x="650" y="235" font-size="8" fill="#6B7280" text-

anchor="middle">(with memory context)</text>

 <!-- Arrow: Outcome Feedback -->

 <line x1="650" y1="260" x2="650" y2="300" stroke="#10B981"

stroke-width="2"/>

 <line x1="650" y1="300" x2="540" y2="300" stroke="#10B981"

stroke-width="2"/>

 <polygon points="540,300 545,297 545,303" fill="#10B981"/>

 <text x="595" y="295" font-size="8" fill="#10B981" text-

anchor="middle" font-weight="600">3. Outcome</text>

 <!-- Learning Loop -->

 <rect x="40" y="440" width="680" height="20" fill="#F0FDF4"

stroke="#10B981" stroke-width="1" rx="4"/>

 <text x="380" y="454" font-size="8" fill="#065F46" text-

anchor="middle" font-weight="600">Continuous Learning Loop:

Outcomes reinforce patterns → Improve future

recommendations</text>

 </svg>

</div>

<h2 id="enterprise-readiness">4. Enterprise Readiness</h2>

<h3 id="deployment-modes">Deployment Modes</h3>

<p>Fabric Mind supports three deployment modes to meet diverse

enterprise requirements for control, compliance, and cost

optimization.</p>

<p>Managed SaaS: Fully managed multi-tenant

deployment hosted by Fabric Mind. Tenants share infrastructure

with logical isolation (per-tenant encryption keys, network

segmentation). This mode offers the fastest time to value with

zero infrastructure management overhead. Suitable for

organizations prioritizing speed and simplicity over

infrastructure control. Data residency options available (US, EU,

APAC regions).</p>

<p>Dedicated Tenant: Single-tenant deployment in

Fabric Mind-managed infrastructure. Provides physical isolation

with dedicated compute, storage, and network resources. Suitable

for organizations with strict compliance requirements (HIPAA,

FedRAMP) or performance isolation needs. Includes dedicated

support SLA and custom retention policies.</p>

<p>On-Premises (Roadmap): Self-hosted deployment

in customer-managed infrastructure (private cloud, on-premises

data centers). Provides maximum control over data sovereignty,

network topology, and infrastructure configuration. Requires

customer-managed operations (upgrades, backups, monitoring).

Suitable for organizations with air-gapped environments or

regulatory constraints prohibiting cloud deployment. Expected

availability: Q3 2026.</p>

<h3 id="reliability-slos">Reliability and SLOs</h3>

<p>Fabric Mind operates under enterprise-grade Service Level

Objectives (SLOs) with transparent monitoring and incident

communication.</p>

<p>Availability: 99.9% uptime for Managed SaaS

(43 minutes downtime per month), 99.95% for Dedicated Tenant (22

minutes downtime per month). Measured as percentage of successful

API requests over rolling 30-day window. Excludes scheduled

maintenance windows (announced 7 days in advance, limited to 4

hours per quarter).</p>

<p>Ingest Latency: P95 latency < 100ms for event

ingestion (from API request to impression write). P99 latency <

200ms. Measured at API gateway, excludes client network latency.

</p>

<p>Assembly Latency: P95 latency < 200ms for

context assembly (from request to manifest response). P99 latency

< 400ms. Includes memory query, graph traversal, and filtering.

Latency increases with graph depth and result count.</p>

<p>Data Durability: 99.999999999% (11 nines)

durability for stored impressions and patterns. Achieved through

multi-region replication, automated backups (hourly snapshots

retained for 7 days, daily snapshots retained for 30 days), and

point-in-time recovery (RPO < 1 hour, RTO < 4 hours).</p>

<h3 id="observability">Observability</h3>

<p>Fabric Mind provides comprehensive observability for

operational transparency and debugging.</p>

<p>Trace ID Propagation: All API requests

include a <code>trace_id</code> header that propagates through

the entire request lifecycle (ingestion → impression → context

assembly → NBA → execution). Trace IDs enable end-to-end request

tracing and correlation across distributed components. Customers

can inject their own trace IDs for integration with existing

observability platforms (Datadog, New Relic, Honeycomb).</p>

<p>Correlation and Audit Evidence: Every memory

operation and action execution is logged with full provenance:

timestamp, user/service identity, tenant ID, input parameters,

output results, and trace ID. Audit logs are immutable and

tamper-evident (cryptographic hashing with blockchain-style

chaining). Logs are retained for 2 years by default (configurable

up to 7 years for compliance).</p>

<p>Metrics and Dashboards: Real-time metrics

exposed via Prometheus-compatible endpoints and pre-built Grafana

dashboards. Key metrics include: API request rate and latency

(P50, P95, P99), memory store size and growth rate, pattern

detection throughput, NBA recommendation acceptance rate, and

governance policy violation count. Custom metrics can be exported

to customer-managed observability platforms via webhook or pull-

based integration.</p>

<h3 id="governance-enterprise">Governance</h3>

<p>Enterprise governance capabilities ensure compliance,

auditability, and operational control.</p>

<p>Retention Policies: Configurable per tenant

with default 2-year retention for reinforced memories and 90-day

retention for unreinforced impressions. Retention enforcement

runs daily, automatically deleting expired memories. Supports

legal hold (freeze retention for litigation or investigation) and

data deletion requests (GDPR right to erasure).</p>

<p>Decay Mechanisms: Memory confidence decays

exponentially over time unless reinforced by repeated exposure or

successful outcomes. Default decay half-life: 30 days

(configurable per tenant). Decay prevents stale memories from

influencing reasoning inappropriately.</p>

<p>Freeze and Rollback: Emergency controls for

incident response and forensic analysis. Freeze blocks all memory

writes while preserving read access, enabling forensic

investigation without contamination. Rollback restores memory

state to a previous checkpoint (hourly snapshots available for 7

days). Both operations are logged for audit and require admin

privileges.</p>

<p>Escalation Workflows: Configurable approval

workflows for high-risk actions. Supports multi-level escalation

(tier 1 → tier 2 → manager) with timeout policies (auto-deny

after 4 hours, auto-escalate after 1 hour). Escalation rules are

tenant-specific and version-controlled.</p>

<h3 id="billing-model">Billing Model</h3>

<p>Fabric Mind uses a transparent usage-based billing model with

predictable subscription tiers and metered add-ons.</p>

<p>Subscription Tiers: Base subscription

includes platform access, standard SLOs, and usage quotas (10K

events/month, 5K context assemblies/month, 2K NBA

recommendations/month). Tiers scale with usage: Starter

($500/month), Professional ($2,500/month), Enterprise (custom

pricing). Annual commitments receive 15% discount.</p>

<p>Usage Meters: Metered billing for usage

beyond subscription quotas. Pricing: $0.01 per event ingested,

$0.05 per context assembly, $0.10 per NBA recommendation, $0.02

per memory write (impression or pattern update). Usage is

aggregated monthly with overage charges billed in arrears.</p>

<p>Enterprise Add-Ons: Private deployment

(Dedicated Tenant): +$5,000/month. Compliance pack (HIPAA,

FedRAMP, SOC 2 Type II): +$2,000/month. Extended retention (7

years): +$1,000/month. Premium support (24/7, 1-hour response

SLA): +$3,000/month. Custom integrations and professional

services: quoted separately.</p>

<h3 id="control-data-plane">Control Plane vs Data Plane</h3>

<p>Fabric Mind architecture separates control plane

(configuration, governance, admin operations) from data plane

(event processing, memory queries, action execution) to ensure

operational stability, security isolation, and independent

scaling.</p>

<div class="diagram-container">

 <svg width="760" height="400" viewBox="0 0 760 400"

xmlns="http://www.w3.org/2000/svg">

 <rect x="10" y="10" width="740" height="380" fill="#FFFFFF"

stroke="#D1D5DB" stroke-width="2" rx="8"/>

 <text x="380" y="35" font-size="14" fill="#111827" text-

anchor="middle" font-weight="700">Control Plane vs Data Plane

Architecture</text>

 <!-- Control Plane -->

 <rect x="40" y="60" width="320" height="300" fill="#FEF2F2"

stroke="#DC2626" stroke-width="2" rx="6"/>

 <text x="200" y="85" font-size="12" fill="#DC2626" text-

anchor="middle" font-weight="700">Control Plane</text>

 <text x="200" y="102" font-size="8" fill="#991B1B" text-

anchor="middle" font-style="italic">(Configuration & Governance)

</text>

 <!-- Control Plane Components -->

 <rect x="60" y="120" width="280" height="40" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="200" y="143" font-size="9" fill="#991B1B" text-

anchor="middle">Tenant Management & Provisioning</text>

 <rect x="60" y="170" width="280" height="40" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="200" y="193" font-size="9" fill="#991B1B" text-

anchor="middle">Governance Policy Configuration</text>

 <rect x="60" y="220" width="280" height="40" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="200" y="243" font-size="9" fill="#991B1B" text-

anchor="middle">Retention & Decay Rules</text>

 <rect x="60" y="270" width="280" height="40" fill="#FFF1F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="200" y="293" font-size="9" fill="#991B1B" text-

anchor="middle">Emergency Controls (Freeze, Rollback)</text>

 <rect x="60" y="320" width="280" height="30" fill="#FEF2F2"

stroke="#DC2626" stroke-width="1" rx="3"/>

 <text x="200" y="338" font-size="8" fill="#991B1B" text-

anchor="middle" font-weight="600">Isolated from data plane for

security</text>

 <!-- Data Plane -->

 <rect x="400" y="60" width="320" height="300" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="2" rx="6"/>

 <text x="560" y="85" font-size="12" fill="#1E40AF" text-

anchor="middle" font-weight="700">Data Plane</text>

 <text x="560" y="102" font-size="8" fill="#1E40AF" text-

anchor="middle" font-style="italic">(Event Processing &

Execution)</text>

 <!-- Data Plane Components -->

 <rect x="420" y="120" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="560" y="143" font-size="9" fill="#1E40AF" text-

anchor="middle">Event Ingestion & Impression Engine</text>

 <rect x="420" y="170" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="560" y="193" font-size="9" fill="#1E40AF" text-

anchor="middle">Memory Store & Context Assembly</text>

 <rect x="420" y="220" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="560" y="243" font-size="9" fill="#1E40AF" text-

anchor="middle">Pattern Detection & NBA Engine</text>

 <rect x="420" y="270" width="280" height="40" fill="#DBEAFE"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="560" y="293" font-size="9" fill="#1E40AF" text-

anchor="middle">Action Execution & Audit Logging</text>

 <rect x="420" y="320" width="280" height="30" fill="#EFF6FF"

stroke="#3B82F6" stroke-width="1" rx="3"/>

 <text x="560" y="338" font-size="8" fill="#1E40AF" text-

anchor="middle" font-weight="600">Scales independently for high

throughput</text>

 <!-- Separation Line -->

 <line x1="380" y1="60" x2="380" y2="360" stroke="#6B7280"

stroke-width="2" stroke-dasharray="5,5"/>

 <!-- Benefits -->

 <rect x="40" y="370" width="680" height="20" fill="#F9FAFB"

stroke="#D1D5DB" stroke-width="1" rx="4"/>

 <text x="380" y="384" font-size="8" fill="#374151" text-

anchor="middle" font-weight="600">Benefits: Security isolation |

Independent scaling | Operational stability | Compliance

separation</text>

 </svg>

</div>

<h2 id="final-recommendation">Final Recommendation: Adopting

Fabric Mind in Production</h2>

<h3 id="adoption-principle">Adoption Principle</h3>

<p>Fabric Mind should be adopted as foundational platform

infrastructure, not as a feature, agent framework, or prompt

system. Memory persistence, governance controls, and outcome

feedback loops are shared capabilities that must operate

consistently across all agentic workflows within the enterprise.

Treating memory as application-level state or embedding it within

individual agent implementations creates fragmentation, prevents

cross-session learning, and undermines the operational benefits

of persistent organizational memory.</p>

<p>Platform-level adoption ensures that all agents—regardless of

their domain, framework, or execution environment—share the same

memory substrate, governance policies, and outcome calibration

mechanisms. This architectural decision is not optional for

production-grade agentic AI. Without it, agents remain stateless,

learning resets with each session, and operational failures recur

without correction.</p>

<h3 id="adoption-sequence">Recommended Adoption Sequence</h3>

<p>Fabric Mind adoption follows a three-phase model designed to

minimize risk, validate behavior, and build confidence before

enabling autonomous execution. Each phase has clear entry

criteria, success metrics, and exit conditions.</p>

<p>Phase 1 — Memory Instrumentation (Read-Only)

</p>

<p>In this phase, Fabric Mind ingests events, generates

impressions, stores memory, and assembles context, but does not

influence agent behavior. All recommendations remain in advisory

or shadow mode. The objective is to validate that memory

infrastructure operates reliably without changing production

workflows.</p>

<p>Activities:</p>

 Configure event ingestion from source systems (incident

alerts, support tickets, telemetry, user actions).

 Enable impression generation and semantic memory storage.

 Integrate context assembly into agent workflows, passing

assembled context as additional input without modifying agent

logic.

 Run NBA engine in shadow mode, logging recommendations

without executing them.

 Monitor ingestion throughput, memory query latency, context

assembly accuracy, and shadow recommendation agreement rate.

<p>Success criteria:</p>

 Event ingestion operates at target throughput with <1%

error rate.

 Memory queries return results in <200ms at p95.

 Context assembly retrieves relevant impressions with

>80% relevance score (validated by human review).

 No degradation in agent performance or user experience.

 Shadow recommendations logged for all eligible situations.

<p>Exit condition: Infrastructure stability confirmed over 30

days of production traffic.</p>

<p>Phase 2 — Pattern Learning & Recommendation

</p>

<p>In this phase, pattern detection activates, NBA

recommendations are surfaced to operators or agents in advisory

mode, and outcome feedback begins. The objective is to validate

that learned patterns reflect reality and that recommendations

improve decision quality.</p>

<p>Activities:</p>

 Enable pattern detection across accumulated memory.

 Surface NBA recommendations in agent UIs or workflows as

suggestions (not automated actions).

 Capture outcome labels (success, failure, neutral) for all

actions taken, whether recommended by NBA or chosen by operators.

 Monitor pattern confidence, recommendation agreement rate,

and outcome correlation.

 Tune assembly policies (freshness window, confidence

threshold, graph depth) based on recommendation quality.

<p>Success criteria:</p>

 Pattern detection identifies recurring situations with

>70% confidence and >10 supporting observations.

 NBA recommendations achieve >85% agreement rate with

operator decisions (measured over 1000+ actions).

 Repeated failure rate decreases by >30% for situations

where NBA recommendations are followed.

 Operators report that recommendations provide useful

context and reduce diagnostic time.

<p>Exit condition: Recommendation quality validated over 60 days

with consistent agreement and outcome improvement.</p>

<p>Phase 3 — Gated Automation</p>

<p>In this phase, high-confidence NBA recommendations are

executed automatically within governance constraints. Automation

is limited to low-risk actions initially, with approval workflows

and rollback mechanisms enforced. The objective is to achieve

measurable operational improvement while preserving safety and

auditability.</p>

<p>Activities:</p>

 Define action risk classifications (low, medium, high) and

approval thresholds.

 Enable gated execution for low-risk actions with confidence

>0.9 and pattern support >20 observations.

 Enforce governance controls: approval workflows for

medium/high-risk actions, audit logging for all executions,

rollback on negative outcomes.

 Monitor execution rate, outcome distribution, escalation

frequency, and operational metrics (MTTR, AHT, cycle time).

 Expand automation scope incrementally based on outcome

validation.

<p>Success criteria:</p>

 Automated actions execute with >95% success rate

(measured by outcome labels).

 Escalation rate remains <5% of automated actions.

 Operational metrics improve: MTTR reduced by >40%, AHT

reduced by >25%, cycle time reduced by >30%.

 No safety incidents or compliance violations attributable

to automated actions.

 Audit trails complete and accessible for all executions.

<p>Exit condition: Automation operates reliably in production

with measurable business impact and maintained safety posture.

</p>

<h3 id="ownership-model">Ownership Model</h3>

<p>Fabric Mind requires clear ownership boundaries to operate

effectively at enterprise scale. The following model separates

platform responsibilities from application responsibilities while

ensuring accountability and operational clarity.</p>

<p>Platform / Infrastructure Team: Owns Fabric

Mind deployment, configuration, and operational health.

Responsible for event ingestion reliability, memory store

performance, API availability, governance policy enforcement, and

compliance controls. Manages tenant provisioning, retention

policies, and platform upgrades. Provides observability

dashboards, SLA monitoring, and incident response for platform-

level issues.</p>

<p>Application Teams: Own agent workflows, event

schema definitions, outcome labeling, and integration logic.

Responsible for configuring assembly policies, defining action

catalogs, setting risk classifications, and tuning recommendation

thresholds. Validate that context assembly retrieves relevant

memory for their use cases. Capture outcome feedback and report

recommendation quality issues to platform team.</p>

<p>Security & Compliance: Own governance

policies, retention rules, data classification, and audit

requirements. Define approval workflows, escalation rules, and

emergency controls (freeze, rollback, circuit breakers). Review

audit logs, validate compliance with regulatory requirements

(GDPR, SOC2, HIPAA), and approve risk classifications for

automated actions.</p>

<p>This separation is necessary because memory infrastructure

must operate consistently across all applications, governance

must be enforced uniformly, and application teams must retain

autonomy over their agent behavior and outcome definitions.

Without clear ownership, memory becomes fragmented, governance

becomes inconsistent, and operational accountability erodes.</p>

<h3 id="definition-success">Definition of Success</h3>

<p>Fabric Mind succeeds in production when the following

conditions are observable and sustained:</p>

 No repeated failures across sessions.

Agents do not retry the same failed action without recognizing

prior attempts. Diagnostic steps are not repeated when similar

situations recur. Resolved issues do not reappear without memory

of past resolutions.

 Outcome-informed actions. Recommendations

reflect learned patterns from past outcomes, not just semantic

similarity. Actions that previously succeeded are prioritized.

Actions that previously failed are deprioritized or flagged for

review.

 Confidence decay when conditions change.

Pattern confidence decreases when outcomes no longer match

predictions. Stale memories lose influence over time unless

reinforced. The system adapts to changing operational conditions

without manual retraining.

 Auditable and reversible automation. Every

automated action is logged with provenance (context, pattern,

confidence, approval status). Rollback mechanisms execute

successfully when outcomes are negative. Audit trails are

complete and accessible for compliance review.

 Learning compounds over time. Operational

metrics improve continuously as memory accumulates. Pattern

confidence increases with reinforcement. Context assembly becomes

more accurate as the memory graph grows. The system answers "Have

we seen this before?" with increasing reliability.

<p>These indicators are operational, not aspirational. They can

be measured through observability dashboards, outcome logs, and

operational metrics. If these conditions are not met, the

platform is not succeeding, and adoption should pause until root

causes are addressed.</p>

<h3 id="closing-statement">Closing Statement</h3>

<p>Fabric Mind complements foundation models, agent frameworks,

and context engineering—it does not replace them. Models provide

reasoning capability. Frameworks provide execution orchestration.

Context engineering provides inference-time information

retrieval. Fabric Mind provides what none of these address:

persistent, governed organizational memory with outcome feedback

loops.</p>

<p>Without memory, agentic AI remains stateless. Without

governance, automation remains unsafe. Without outcome feedback,

learning does not occur. Persistent, governed memory is not an

enhancement to production-grade agentic AI—it is the missing

prerequisite.</p>

